
Exploring software developers’ work practices: Task differences,
participation, engagement, and speed of task resolution

Sherlock A. Licorish*, Stephen G. MacDonell
Department of Information Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand

A R T I C L E I N F O

Article history:
Received 11 November 2014
Received in revised form 21 June 2016
Accepted 22 September 2016
Available online xxx

Keywords:
Software developers
Task differences
Participation and engagement
Speed of task resolution
Mining software repositories
Empirical studies

A B S T R A C T

In seeking to understand the processes enacted during software development, an increasing number of
studies have mined software repositories. In particular, studies have endeavored to show how teams
resolve software defects. Although much of this work has been useful, we contend that large-scale
examinations across the range of activities that are commonly performed, beyond defect-related issues
alone, would help us to more fully understand the reasons why defects occur as well as their
consequences. More generally, these explorations would reveal how team processes occur during all
software development efforts. We thus extend such studies by investigating how software practitioners
work while undertaking the range of software tasks that are typically performed. Multiple forms of
analyses of a longitudinal case study reveal that software practitioners were mostly involved in fixing
defects, and that their engagement covaried depending on the nature of the work they were performing.
Furthermore, multiple external factors affected speed of task resolution. Our outcomes suggest that
behavioral and intrinsic issues may interact with extrinsic factors becoming significant predictors of the
speed of software task resolution.

ã 2016 Elsevier B.V. All rights reserved.

1. Introduction

Software development is generally acknowledged as an
intellectually challenging activity, and one that typically requires
team members to work collectively to create a product or service
that may be critical but yet is conceptual, fluid, and intangible. In
spite of the ongoing provision of innovations with respect to
development methods and tools [1–3], research continues to note
that many software projects do not succeed [4–6]. In recent years,
an increasing proportion of research effort has therefore aimed to
understand the work practices and team processes implemented
during development, in the belief that this knowledge might be
better leveraged to improve project outcomes [7,8]. In particular,
automatically generated archives and repositories have gained
prominence as sources of information for those studying team
behaviors, enabling researchers to study software practitioners’
involvement in detail, and performance in development and
maintenance activities. Such studies have examined both open and
closed repositories of projects including Apache [9], Eclipse [10],
GNOME, NetBeans, and OpenOffice [11], along with Jazz [12–15]

and Windows Vista [16], providing explanations for various team
phenomena and development issues and outcomes.

This growing attention given to mining software repositories
reflects the emerging significance of the study of automatically
stored software artifacts in order to understand team processes.
More specifically, communication artifacts such as electronic
messages, change request histories, and blogs are able to provide
unique perspectives on the activities that occur during the
software development life cycle (SDLC) – perspectives that cannot
be drawn from code or similar technical artifacts. Analysis
opportunities presented by these automatically recorded artifacts
are also potentially valuable because of the reduction of the likely
bias that can arise with self-reporting [17,18], as well as the
unobtrusive nature of the investigation of team processes and
work practices from such artifacts.

Although previous work has provided useful insights into the
nature of the relationship between the frequency of practitioners’
communications and the prevalence of bugs (or software defects)
[10,19], comparatively less attention has been given to the ways in
which developers work and behave when undertaking other
software development tasks that are commonly performed [13,20].
In addition, although previous work has examined how commu-
nication patterns relate to team size [21,22], there is growing
support for the need to examine the details within developers’

* Corresponding author.
E-mail addresses: sherlock.licorish@otago.ac.nz (S.A. Licorish),

stephen.macdonell@otago.ac.nz (S.G. MacDonell).

http://dx.doi.org/10.1016/j.im.2016.09.005
0378-7206/ã 2016 Elsevier B.V. All rights reserved.

Information & Management xxx (2016) xxx–xxx

G Model
INFMAN 2939 No. of Pages 19

Please cite this article in press as: S.A. Licorish, S.G. MacDonell, Exploring software developers’ work practices: Task differences, participation,
engagement, and speed of task resolution, Inf. Manage. (2016), http://dx.doi.org/10.1016/j.im.2016.09.005

Contents lists available at ScienceDirect

Information & Management

journal homepage: www.elsevier .com/ locate / im

mailto:sherlock.licorish@otago.ac.nz
mailto:stephen.macdonell@otago.ac.nz
mailto:stephen.macdonell@otago.ac.nz
http://dx.doi.org/10.1016/j.im.2016.09.005
http://dx.doi.org/10.1016/j.im.2016.09.005
http://dx.doi.org/10.1016/j.im.2016.09.005
http://www.sciencedirect.com/science/journal/03787206
www.elsevier.com/locate/im


communications beyond assessments based only on message
exchange frequency [23,24]. This need to move beyond frequency-
based assessments and to examine a larger spread of software
tasks is supported by outcomes from early works in the social and
organizational psychology space, which established that multiple
properties of team tasks affect team performance [25–27]. Thus,
different task ecosystems are likely to benefit from particular
starting configurations and team arrangements. Exploring the way
developers work across the range of software tasks that are
commonly performed, and particularly those initial events that
lead to the development of software features in the first place, and
then subsequent bugs, could provide added value for the software
development community.

We set out to address this research opportunity, and hence
provide initial insights into the way software tasks are distributed
in a large software project, and how teams assemble and undertake
different forms of software development activity. This study thus
provides an extension to those mentioned above, with a view to
explaining how different task ecosystems are likely to benefit from
particular team configurations. Our contributions in this paper are
twofold: 1. We extract and mine a large software repository and
apply both statistical and deeper content analysis (CA) approaches
in our study of software artifacts to understand developers’ work
practices when performing various forms of software task. Our
experiences are systematically documented, and may serve as a
guide for those undertaking similar studies involving multiple
forms of analyses. 2. Subsequently, given our observations, we
decompose our findings through a range of theoretical lenses,
provide multiple recommendations for software project gover-
nance, and identify avenues for future work.

The remainder of this paper is organized as follows. In the next
section (Section 2), we survey previous work, and outline our
specific research questions (RQs). We then describe our research
model, and further decompose our RQs in Section 3. We explain
our research method and measures in Section 4, also outlining our
study context in this section. In Section 5, we present our results,
and these findings are discussed in Section 6. In Section 7, we
highlight the implications of our findings, and outline future
research directions. In Section 8, we consider our study’s
limitations, and finally, we draw conclusions in Section 9.

2. Background and motivation

We survey previous work in this section. In order to both
ground and structure our literature inspection, we first review
those studies that have considered software teams’ communica-
tion in Section 2.1. Considering our objective to examine how
practitioners work across a range of software development tasks,
we next examine general works on task differences in Section 2.2.
We finally survey works that have considered software develop-
ment task differences in Section 2.3, identifying research gaps and
outlining our RQs in this subsection.

2.1. The study of software teams’ communication

Beyond using and interpreting measurements focused on code
and numbers of bugs [28,29], the availability of publicly searchable
communication artifacts has provided researchers with the
opportunity to study patterns in software development in far
greater detail than would be possible if they were to consider
technical artifacts alone [10,21]. This form of evidence has
supported analysis at individual and team levels, providing
insights in relation to participants’ contributions to code. Such
outcomes are evident in the literature on the study of communi-
cation and coordination from both open-source software (OSS) and
closed-source software (CSS) repositories. In the OSS context, for

instance, Abreu and Premraj [10] examined the Eclipse mailing list
and found that developers communicated most frequently at
release and integration time, but that increased communication
also coincided with a higher number of bugs being introduced. Bird
et al. [9] confirmed that the more software development an
individual undertakes, the more coordination and controlling
activities (s) he must perform. In considering patterns of
contribution, Cataldo et al. [21] found that the practitioners
who communicated the most also contributed most actively
during software development. Furthermore, in a later study,
Shihab et al. [30] found that proposals and actions discussed
during team communication correlated with subsequent software
development actions that were enacted, when studying the
GNOME OSS project.

Earlier work by Howison et al. [22] found that a few key
members of smaller OSS projects occupied the center of their
teams’ communication networks, in contrast to larger teams
whose communication networks appeared more modular. Hinds
and McGrath [31] confirmed the centralized communication
pattern, but did not consider team size. Bird et al. [32] examined
communities and subcommunities among the Apache, Python,
PostgreSQL, and Perl projects, and concluded that specific technical
needs drove the emergence of subcommunities in these projects.
The Debian mailing list was interrogated by Sowe et al. [33] to
observe knowledge-sharing among developers; they found that no
specific individual dominated knowledge-sharing activities. A
study of coordination conducted by Ehrlich et al. [34] found that
brokers bridge communication gaps for teams that communicated
across distributed sites. In addition, Ghapanchi [35] found that
practitioners’ willingness to communicate in OSS projects was
positively influenced by task identification, and the popularity of
such projects is positively influenced by who gets assigned tasks,
and how such tasks are managed. These findings indeed support
the view that evidence drawn from communication and coordina-
tion processes could reliably complement and support code-
centric analyses, thus highlighting the importance of studying
communication artifacts.

Beyond those works using OSS repository data to investigate
team processes, artifacts in the IBM Rational Jazz CSS repository
have also been used to study software practitioners’ interactions
and communications, largely from a social network analysis (SNA)
perspective [36–38], offering somewhat contradictory findings to
those noted in the OSS body of work. Contrary to the findings
reported by others, which showed that a few developers generally
dominate team communication [30,39], Nguyen et al. [37] studied
multiple software teams at IBM Rational and noted that a high
proportion – approximately 75% – of IBM Rational Jazz’s team
members actively participated in the project’s communication
network. In addition, these authors found IBM Rational Jazz project
teams to have highly interconnected social networks, requiring
few brokers to bridge communication gaps. When examining Jazz
teams, and others developing software for the automotive
industry, Ehrlich and Cataldo [40] found that there were improve-
ments in teams’ productivity and product quality when technical
leaders shared more information, or when they occupied central
positions in communication networks.

The derivation of insights such as those just described further
supports the relevance of studying teams’ communications. In fact,
Datta et al.’s [41] SNA study of agile developers’ collaboration while
using the IBM Rational Jazz platform found that developers’
expressions during regular communication possessed a wealth of
useful information, much more than could be gleaned from
examining source file changes alone. An earlier study (published in
1994) exploring software developers’ activities found that up to
50% of practitioners’ time was spent on interpersonal communi-
cation and coordination during software problem solving [42].

2 S.A. Licorish, S.G. MacDonell / Information & Management xxx (2016) xxx–xxx

G Model
INFMAN 2939 No. of Pages 19

Please cite this article in press as: S.A. Licorish, S.G. MacDonell, Exploring software developers’ work practices: Task differences, participation,
engagement, and speed of task resolution, Inf. Manage. (2016), http://dx.doi.org/10.1016/j.im.2016.09.005

http://dx.doi.org/10.1016/j.im.2016.09.005


Download English Version:

https://daneshyari.com/en/article/4972621

Download Persian Version:

https://daneshyari.com/article/4972621

Daneshyari.com

https://daneshyari.com/en/article/4972621
https://daneshyari.com/article/4972621
https://daneshyari.com

