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a b s t r a c t

A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from
hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all end-
members and each endmember corresponds to a real pixel in the image scene. First, it improves the
re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function
constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between
pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimiza-
tion problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces
the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robust-
ness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation
and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its compu-
tational efficiency in realistic implementations of RKADA, respectively. The optimization equation of
RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are
finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make com-
parisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical
algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal
subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive
projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factoriza-
tion (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show
that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-
mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline operations
and shows significant improvement in identifying pure endmembers for ground objects with smaller
spectrum differences. Therefore, the RKADA could be an alternative for pure endmember extraction from
hyperspectral images.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Hyperspectral imaging collects hundreds of narrow bands of
ground objects on the earth surface, and it can be used in identify-
ing and recognizing spectrum divergences among different materi-
als (Bioucas-Dias et al., 2013; Tong et al., 2014). The obtained
hyperspectral imagery (HSI) has shown great potentials in many
realistic applications including ocean monitoring (Wong and

Minnett, 2016; Pan et al., 2017), mine exploration (Petit et al.,
2017), precision agriculture (Moharana and Dutta, 2016), land
cover mapping (Clark and Kilham, 2016) and so on. Unfortunately,
relatively low spatial resolutions with respect to high spectral res-
olutions of imaging spectrometer, together with homogenous mix-
ture of distinct materials, render that the observed spectral
signature at each pixel is actually a spectral mixture of several pure
materials (i.e., endmembers) (Tang et al., 2014; Sun et al., 2016; Xu
et al., 2015; Zhong et al., 2016). Spectral mixture reduces the
power of hyperspectral imagers for real applications mentioned
above. Therefore, spectral unmixing is urgent to recover spectral
signatures of endmembers present in the image scene, and
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meanwhile to quantify the fractions or proportions of each end-
member at each mixed pixel (Bioucas-Dias et al., 2012; Ma et al.,
2014; Xu and Shi, 2017).

Hyperspectral unmixing includes two main stages, endmember
extraction and abundance estimation. Endmember extraction is a
preliminary but key work for hyperspectral unmixing, regardless
of its linear or nonlinear models supposed (Bioucas-Dias et al.,
2012; Tang et al., 2015; Zhang et al., 2017). Proper endmembers
can further bring about accurate abundance estimation for each
pixel and guarantee good performance of spectral unmixing, and
vice versa. Generally, spectral signatures of endmembers can be
extracted from two different schemes (Ambikapathi et al., 2011;
Liu et al., 2017): (1) the reference-endmembers are manually mea-
sured on the ground or in the library using the field spectrora-
diometer, and (2) the image-endmembers are extracted from
hyperspectral images using endmember extraction algorithms.
The spectrum of reference-endmembers usually disagrees with
those of image pixels because they have different collecting condi-
tions from hyperspectral imaging (e.g., image sensors, atmospheric
effects and scattering conditions) (Stagakis et al., 2016; Zhang
et al., 2017). Complicated processing in spectral calibrations is
mandatorily requiring for spectral matching between reference-
endmembers and the image pixels. In contrast, the image-
endmembers are directly estimated from the image scene and sim-
pler procedures bring them more popularity in spectral unmixing
(Fu et al., 2015; Sun et al., 2016; Xu and Shi, 2017).

Numerous image-endmember extraction methods have been
proposed in current literatures, and they utilize two divergent
schemes (Bioucas-Dias et al., 2012): (1) non-pure pixel scheme
and (2) pure pixel scheme. The non-pure endmember scheme
assumes that no pure pixels exist in the image scene and it seeks
artificial pure pixels or ‘‘virtual” endmembers for the HSI data. Typ-
ical methods include minimum volume simplex analysis, convex
analysis-based minimum volume enclosing simplex, independent
component analysis and Bayesian approaches (Bioucas-Dias et al.,
2012; Dobigeon et al., 2014). Pure-pixel scheme regards that at
least one pure pixel exists in the image scene and aims to find pure
pixels that contain only one material at the pixel. In this study, we
focus our work on the pure-pixel scheme and investigate the pure
endmember extraction problem for the hyperspectral images.

Researchers have made great achievements in the pure end-
member extraction, and relevant methods can be classified into
two main aspects: (1) geometrical methods and (2) matrix factor-
ization methods. The benchmark of geometrical method is pixel
purity index (PPI) (Chang and Plaza, 2006). It iteratively projects
each spectral vectors onto skewers that are defined as a large set
of random vectors, and then chooses the extreme pixels with high-
est accounting scores as the final endmembers. N-FINDER esti-
mates pure endmember signatures that correspond to a set of
pixels defining the largest volume by inflating a simplex inside
the HSI dataset (Winter, 1999). The alternative volume maximiza-
tion (AVMAX) was inspired from N-FINDER, and it maximizes the
volume of the simplex defined by the endmembers with respect
to only one endmember at one time (Chan et al., 2013). The vertex
component analysis (VCA) determines endmembers from the
extreme of the projection that has the random direction orthogonal
to the subspace spanned by the identified endmember signatures
at each iteration (Nascimento and Dias, 2005). The successive vol-
ume maximization (SVMAX) improves from VCA, and their slight
difference is that SVMAX utilizes the complete subspace whereas
VCA considers the random direction in the subspace. The simplex
growing algorithm (SGA) iteratively grows a simplex by finding
the vertices corresponding to the maximum volume (Chang et al.,
2006). Unfortunately, the above geometrical methods utilize the
random initial conditions and hence suffer from the un-
reproducibility problem in realistic applications (Chang, 2013).

Moreover, these approaches find one endmember after another
via iterative procedure, which would bring about high computa-
tion when the number of pixels and endmembers in the image
scene is significantly large (Ambikapathi et al., 2011).

In recent years, owning to random projections and convex opti-
mization in compressive sensing (Donoho, 2006), many matrix fac-
torization methods have been presented to handle the pure
endmember extraction problem (Fu et al., 2015; Gillis and Ma,
2015). These methods formulate a convex equation of matrix fac-
torization with many additive constraints (e.g., sparsity, low rank
or positivity) to simultaneously estimate all the pure endmembers
(Ma et al., 2014), and they can be grouped into two main aspects:
(1) separable nonnegative matrix factorization (Separable-NMF)
methods and (2) sparse self-representation methods. The
Separable-NMF methods stand on the linear mixture model and
pure pixel assumption, and they transfer the pure endmember
extraction into the problem of nonnegative matrix factorization
under the separability condition (Gillis and Vavasis, 2014). The
separability condition purifies the blind estimation of regular
NMF and guarantees the existence of pure pixels in the image
scene. Representative algorithms include the hierarchical cluster-
ing based on rank-two nonnegative matrix factorization (H2NMF)
(Gillis et al., 2015) and recursive nonnegative matrix factorization
(RNMF) (Gillis and Vavasis, 2014). In contrast, the sparse self-
representation methods utilize the self-representation property
of the HSI data, and devise the pure endmember extraction into a
joint sparse recovery problem by using the HSI dataset itself as a
dictionary (Qu et al., 2015). The subspace vertex pursuit (SVP)
(Qu et al., 2015) and self-dictionary multiple measurement vector
(SDMMV) (Fu et al., 2015) are exampled as their typical algorithms.
For example, H2NMF considers the small-sized materials as noise
or outliers, which would negatively affect the endmember estima-
tion. (Bioucas-Dias et al., 2012). The SDMMV is only robust to noise
perturbations with sufficiently small levels and that definitely
degrades its performance in some realistic hyperspectral images
with bigger noise (Fu et al., 2015).

In this paper, inspired by archetypal analysis (AA) (Cutler and
Breiman, 1994), we propose a robust kernel archetypoid analysis
(RKADA) method to investigate the pure endmember extraction
problem in the HSI data. Our motivation is to improve the convex
equation of AA with a new binary sparse constraint, to promote the
robustness of optimization function and its computational speeds,
and to apply the proposed method in the field of pure endmember
extraction problem on realistic hyperspectral images. A few schol-
ars have made some works on AA for spectral unmixing in HSI data
(Sun et al., 2016; Zhao et al., 2015, 2016; Zhao et al., 2017). For
example, Zhao introduced AA into spectral unmixing and tested
the kernel archetypal analysis (KAA) in multiple endmember
extraction for the HSI scenario without pure endmembers (Zhao
et al., 2015). After that, he implemented the Nystrom method to
accelerate computation speeds of Gaussian kernel matrix and pre-
sented a fast version of KAA for endmember extraction and multi-
layer unmixing on the HSI data (Zhao et al., 2017, 2016). Although
the works by Zhao and us adopt similar kernel functions into AA to
investigate the spectral unmixing problem of the HSI data, our pro-
posed RKADA method differs from his work in three main aspects.
(1) Our method is proposed for extracting pure endmembers
whereas previous works by Zhao were concentrated in the scenario
of HSI data without pure endmembers. The proposed RKADA orig-
inates from the archetypoid analysis (ADA), which is an improved
model of AA, and it assumes that the archetypoids or pure end-
members correspond to real pixels in the image scene. In contrast,
the KAA by Zhao originates from AA, and it assumes that the arche-
types or endmembers are a linear mixture of all the pixels. Their
assumptions determine that the extracted endmembers are ‘‘vir-
tual” endmembers and do not exist in the image scene. (2) Our
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