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a b s t r a c t

We propose an approach for the automatic coarse alignment of 3D point clouds which have been
acquired from various platforms. The method is based on 2D keypoint matching performed on height
map images of the point clouds. Initially, a multi-scale wavelet keypoint detector is applied, followed
by adaptive non-maxima suppression. A scale, rotation and translation-invariant descriptor is then com-
puted for all keypoints. The descriptor is built using the log-polar mapping of Gabor filter derivatives in
combination with the so-called Rapid Transform. In the final step, source and target height map keypoint
correspondences are determined using a bi-directional nearest neighbour similarity check, together with
a threshold-free modified-RANSAC. Experiments with urban and non-urban scenes are presented and
results show scale errors ranging from 0.01 to 0.03, 3D rotation errors in the order of 0.2� to 0.3� and
3D translation errors from 0.09 m to 1.1 m.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Automatic 3D point cloud registration is a major research topic
in photogrammetry, computer vision and computer graphics. In
many instances, there is the need to align point cloud data col-
lected at different times from different platforms including laser
scanners (e.g., aerial, terrestrial and mobile scanners), satellite sys-
tems and unmanned aerial vehicles (UAV). Fusion of multi-sensory
data has numerous applications in 3D building modelling and
reconstruction, change detection and map-revision in urban and
non-urban environments, crime scene reconstruction, and map-
ping of open-pit mines.

There are two main phases for pairwise 3D point cloud registra-
tion: (i) the initial, coarse alignment, and (ii) the refined alignment.
Both require the computation of a mathematical mapping between
two point cloud datasets. This mapping is used to transform the
‘source’ point cloud to the ‘target’ point cloud. For over two dec-
ades, the refined alignment problem has received considerable
attention since the development of the influential ‘Iterative Closest
Point’ (ICP) algorithm (Besl and McKay, 1992; Chen and Medioni,
1992). Rusinkiewicz and Levoy (2001) provide an overview of

many ICP variants. Bouaziz et al. (2013) developed the so-called
‘Sparse ICP’ which is less sensitive to outliers than the classical
ICP. In the photogrammetric community, Gruen and Akca (2005)
proposed an alternative to the ICP referred to as ‘Least Squares
3D Surface Matching’. Instead of using closest point for correspon-
dences as done in ICP, Bae and Lichti (2008) developed the ‘Geo-
metric Primitive ICP’ method which instead used normal vector
information together with change in surface curvature for point
cloud matching.

As the name indicates, the refined alignment step is applied to
fine-tune the matching of a point cloud pair already assumed to be
coarsely co-registered. Generally, the performance of refined align-
ment methods depends on the quality of matching achieved in the
previous coarse alignment step. Inaccurate initial registration can
lead to wrong, local minima solutions during the fine-tuning pro-
cess. Motivated by this, we concentrate on addressing the initial,
coarse point cloud co-registration problem.

2. Related works on automated coarse point cloud alignment

By coarse alignment we assume that there is no prior
knowledge of the 3D conformal transformation parameters (i.e.,
single global scale factor, 3D rotation angles and 3D translations).
However, in some of the reviewed literature, the scale factor is
assumed to be known and only the six rigid parameters are

http://dx.doi.org/10.1016/j.isprsjprs.2017.05.014
0924-2716/� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ravi071@yorku.ca (R.A. Persad), armenc@yorku.ca

(C. Armenakis).

ISPRS Journal of Photogrammetry and Remote Sensing 130 (2017) 162–186

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2017.05.014&domain=pdf
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.014
mailto:ravi071@yorku.ca
mailto:armenc@yorku.ca
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.014
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


considered as the unknowns to be computed. Instances of such
cases will be identified as we proceed. There are various
approaches one can apply to achieve initial source to target point
cloud co-registration. We classify these into three categories: (i)
3D descriptor-based methods, (ii) 3D non-descriptor-based- meth-
ods and (iii) 2D image-based methods.

2.1. 3D descriptor-based methods

Descriptor-based methods are typically applied in 3D feature
matching frameworks. They usually rely on the extraction of salient
key-features (e.g., 3D keypoints) on the point cloud surface. For
these keypoints, descriptors are formed by utilizing various types
of local neighbourhood shape attributes of the point cloud. Similar
descriptors on source and target point clouds can then be matched
to find corresponding keypoints. Various 3D point cloud descriptors
have been developed over the years. Some of these include the Spin
Images (Johnson and Hebert, 1999), Fast Point Feature Histograms
(Rusu et al., 2009) and Signature of Histograms of Orientations
(Tombari et al., 2010). These descriptors require a local point cloud
neighbourhood to be defined around the keypoint. A user-specified
distance is applied to define local neighbourhoods when the source
and target point clouds have the same scale. In situations where
there is a scale difference these descriptors are not scale-invariant
and will fail during the feature matching process.

Typically, scale-invariance is achieved during the keypoint
detection phase, where a local scale value is computed for every
keypoint. Then this local scale is used to define the local region
used for descriptor generation. This concept is popularly applied
for 2D keypoint descriptors. For example, the Scale Invariant Fea-
ture Transform (SIFT) detector (Lowe, 2004) uses a ‘Difference-of-
Gaussian’ (DOG) framework for estimating the local scale, whereas
the Harris-Laplacian interest point operator (Mikolajczyk and
Schmid, 2004) uses Lindeberg’s automatic scale selection approach
(Lindeberg, 1998). There are 3D extensions of the SIFT (Flitton
et al., 2010) and Speeded Up Robust Features (SURF) (Knopp
et al., 2010). However, these are volume-based methods which uti-
lize 3D voxel representations instead of direct point cloud data. In
recent work, Mellado et al. (2016) developed an approach for scale-
invariant co-registration of multi-sensor point clouds based on a
descriptor known as ‘Growing Least Squares’ (GLS). The GLS
descriptor is built in a logarithmic scale space, facilitating the pro-
vision of local and global scale-invariant point cloud attributes.

2.2. 3D non-descriptor-based methods

There are also descriptor-free approaches which address the
coarse 3D point cloud alignment problem. A common approach
for global co-registration is the utilization of Principal Component
Analysis (PCA). PCA is used to approximate the rotation required
to align the coordinate systems of the source and target point
clouds. The translation can be estimated by the difference in cen-
troids of the source and target data. However, when there is partial
overlap and/or shape deformation between the source and target
surfaces this approach does not provide the correct transformation
parameters.

Other non-descriptor based methods utilize various geometric
constraints and relationships amongst points, lines or planes. In
terms of the plane-based methods, von Hansen (2006) presented
a framework for terrestrial laser scanning (TLS) co-registration.
Firstly, planes are extracted from point cloud data and this is fol-
lowed by an exhaustive search for corresponding planes. The
method does not cater for scale differences between the point
clouds. Brenner et al. (2008) derived two methods for the coarse
registration of TLS data: a plane-based scoring approach and
another which uses the normal distributions transform (NDT)

(Biber, 2003). In the first method, plane triplet correspondences
are scored using the similarity of their normal vector directions,
in combination with distances to the plane origin. The second
method sliced the 3D scans into 2D layers, and then used the 2D
NDT algorithm for co-registration. Only the 3D roto-translational
parameters were accounted for in their work.

Stamos and Leordeanu (2003) used both linear and planar fea-
tures to align laser scans of buildings. Properties such as length
of the lines, in addition to plane sizes were used to discard possible
erroneous matches, thus reducing the combinatorial correspon-
dence search space. This was accomplished using a variety of
heuristically set thresholds. Their method solved for the six rigid
parameters. Yang et al. (2016) used semantic features from urban
scenes for automated TLS co-registration. The point cloud data is
segmented into ground and non-ground followed by the extraction
of vertical linear features. The vertical features were then triangu-
lated to form a network. Then a hashing table with triangular con-
straints were used to find matching source and target triangles.
The method used various Euclidean distance-based constraints
and thresholds which can only be applied when source and target
point clouds are of the same scale.

Linear features extracted from point clouds have been used to
match Airborne Laser Scanning (ALS) and TLS data (von Hansen
et al., 2008). This method sequentially computed the 3D rotation
and translation parameters. Rotation was derived via the correla-
tion of line orientation histograms. Afterwards, translation was
determined using a ‘generate and test’ scheme, where the quality
of all line correspondence combinations are assessed using the
proximity of matching between ALS and TLS line midpoints. Yang
et al. (2015) presented an approach for ALS to TLS alignment in
urban scenes. They employed a spectral graph correspondence
approach for matching building outlines. The graph matching uti-
lized scale-variant geometric constraints such as distances
together with several other spatial relations derived from the TLS
and ALS building outlines. Urban areas typically contain many
other rich descriptive details such as road networks, street furni-
ture and vegetation. Therefore, the method may falter in urban
datasets where there is a lack of building structures.

Aiger et al. (2008) developed the ‘4-Point Congruent Set’ (4PCS)
method for coarse rigid alignment of point clouds. The approach
begins by sampling four-point coplanar tuples from the source
point cloud, followed by a search based on an affine ratio to find
corresponding four-point tuples in the target point cloud. The best
transformation is then selected from multiple candidate transfor-
mations formed by the set of matching quad- ruples. There have
been several extensions/variations of 4PCS. Theiler et al. (2014)
combined 3D keypoints with the 4PCS for the alignment of terres-
trial laser scans. In other work, Mellado et al. (2014) developed a
speeded up version of 4PCS. In context of full coarse registration
(i.e., solving for scale and rigid parameters), Corsini et al. (2013)
presented an extension of 4PCS which can handle scale changes
between datasets.

2.3. 2D image-based methods

Another active branch of research which addresses the coarse
point cloud alignment are image-based approaches. The concept
revolves around the utilization of image-based representations of
the point cloud data collected from various sensor acquisition sys-
tems.We briefly summarize the various types of image-based point
cloud representations. One type of image representation can be
obtained from optical cameras which are mounted to and synchro-
nised with the laser scanners during point cloud data collection. If
the transformation between the camera coordinate system and
the laser scanning system is established prior to data collection,
then the relative orientation of an image pair can be used to derive
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