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a b s t r a c t

It is not well understood how bottom reflectance of optically shallow waters affects the algorithm per-
formance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm
that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or
coastal waters. The field sampling was conducted during four research cruises within the Saginaw
River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected
water samples, determined the depth at each sampling location and measured optical properties. The
sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m�1. Field sample analysis
revealed that bottom reflectance does significantly change water apparent optical properties. We devel-
oped a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively
reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom
contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of
CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently
separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was pro-
posed that references the amount of bottom effect in order to identify the most suitable algorithm (opti-
cally shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM
estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote
sensing in monitoring carbon pools at the land-water interface.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Inland waters (streams, rivers and lakes) are responsible for
transporting and transforming large amounts of carbon from ter-
restrial ecosystems to aquatic environments (Tranvik, 2014). Each
year, inland waters emit about 1 gigaton of carbon as CO2 to the
atmosphere and transfer an equivalent amount of carbon to ocean
waters (Battin et al., 2009). This flux is larger than originally esti-
mated and more than half of it results from the movement of dis-
solved organic carbon (DOC) from terrestrial environments
(Stedmon et al., 2000). Accordingly, riverine systems (streams
and rivers) govern much of the DOC export from terrestrial to
aquatic environments (IPCC, 2007) and dictate the spatial and tem-
poral variability of freshwater DOC in drainage watersheds. Shal-
low coastal and estuarine areas are the primary interface regions

for carbon exchange from terrestrial to aquatic ecosystems. The
variations of terrestrial carbon exports in these regions are heavily
associated with anthropogenic activities (Palmer et al., 2015).
Therefore, increased attention is being devoted to carbon monitor-
ing of optically shallow waters. Several studies have demonstrated
that remote sensing technologies show great promise for monitor-
ing freshwater DOC dynamics through bio-optical properties
(Brezonik et al., 2015; Kutser et al., 2015; Olmanson et al., 2016;
Zhu et al., 2015).

Colored dissolved organic matter (CDOM) is defined as the pho-
toactive fraction of dissolved organic matters in water (Brando and
Dekker, 2003). Light absorption by CDOM tends to be strongest at
short wavelengths (ultraviolet to blue) while diminishing to near
zero in the red wavelength region of the electromagnetic spectrum
(Markager and Vincent, 2000). So CDOM level is often represented
by a CDOM absorption coefficient within the highly absorbed short
wavelengths, and 440 nm is frequently used by the remote sensing
community (Brando and Dekker, 2003; Matsuoka et al., 2013;
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Menon et al., 2011; Watanabe et al., 2016). Many previous studies
have confirmed that CDOM levels are highly correlated to DOC
concentrations in coastal & inland waters influenced by river dis-
charge, regulated by terrestrial sources and seasonal effect (Del
Castillo et al., 1999; Del Vecchio and Blough, 2004; Ferrari et al.,
1996; Hestir et al., 2015; Kowalczuk et al., 2003). Therefore, CDOM
is often used as a proxy to trace the spatial distribution of DOC so
as to help quantify the transport of terrigenous organic carbon
(Mannino et al., 2008). Thus, the quantitative estimation of CDOM
absorption via remote sensing aids in the better understanding of
carbon cycling at the land-water interface.

Most research efforts on the remote sensing of water biogeo-
chemistry (CDOM, Chl-a and non-algal particles) have focused on
the estimation of water bio-optical properties in open oceans
(Lee, 2006; Mobley, 1999; Siegel et al., 2002). Generally, many of
these remote sensing algorithms empirically utilize band ratios
calibrated from regional datasets to retrieve water properties
(Kutser et al., 2005; Matthews, 2011). However, they are often
site-specific and need intensive calibration when applied to a
new environment. Semi-analytical algorithms made a significant
improvement to location independence by extracting water bio-
chemical properties based on bio-optical radiative transfer models.
Representative algorithms include multi-band quasi-analytical
algorithm (QAA) (Lee et al., 2002), Carder-MODIS (Carder et al.,
2004), Garver-Siegel-Maritorena (GSM) (Maritorena et al., 2010,
2002), and Linear Matrix (LM) model (Hoge and Lyon, 1996;
Yang et al., 2011). Unfortunately, these algorithms cannot separate
CDOM absorption from adg(440), the combined absorption of
CDOM and non-algal particles (NAP), due mainly to their similar
absorption spectra. Recently, several studies endeavored to extend
mainstream ocean color algorithms to derive CDOM absorption for
coastal and open ocean waters (Budhiman et al., 2012; Cui et al.,
2014; Matsuoka et al., 2013; Shanmugam, 2011; Zhu and Yu,
2013). However, when these relatively mature semi-analytical
ocean color algorithms are directly applied to inland waters, the
uncertainty of the resulting CDOM estimation is prohibitively high
(Zhu et al., 2013b).

In general, there are two major challenges with the current
semi-analytical algorithms used for CDOM retrieval of inland
waters. First, the bottom effect of shallow freshwater introduces
significant uncertainty on CDOM estimation. Ocean color algo-
rithms are developed for optically deep waters, which assume
the upwelling water leaving radiance is only the result of water
column constituents and ignore bottom reflectance (Stedmon
et al., 2000). This assumption is not valid for optically shallow
inland and coastal waters, and therefore greatly limits the usage
of these algorithms for inland waters (Aitkenhead-Peterson et al.,
2003). Specifically, none of the aforementioned algorithms con-
sider the contribution of bottom reflectance and therefore they
are not capable of accounting for the high uncertainty introduced
by bottom effects in optically shallow waters. Second, semi-
analytical algorithms often incorporate empirical parameters into
bio-optical models (water radiative transfer models). Such param-
eters are largely calibrated via ocean and offshore observations.
Inland fresh waters are often much richer in water-borne con-
stituents, (i.e., a higher concentration of CDOM, Chl-a and/or sus-
pended sediment), so these algorithms are often not optimal for
handling in-land water environments (Zhu and Yu, 2013; Zhu
et al., 2013b). Except for a few cases, the majority of published
research on CDOM retrieval in optically shallow lake waters adopt
empirical methods (Campbell et al., 2011; Kutser et al., 2005, 2015;
Odermatt et al., 2012; Olmanson et al., 2016).

Bottom effects have been considered in some aquatic remote
sensing studies, including estimating water optical depth (Brando
et al., 2009; Majozi et al., 2014; Maritorena et al., 1994; Zhao
et al., 2013), retrieval of the diffuse attenuation coefficient

(Barnes et al., 2014, 2013; Dekker et al., 2011; Giardino et al.,
2015; Volpe et al., 2011), and monitoring bottom sediments prop-
erties (Klonowski et al., 2007). All of these approaches include the
contribution of bottom sediment reflectance to the total upwelling
radiance, which inspired us to develop a CDOM retrieval algorithm
for optically shallow waters that also incorporates bottom
reflectance.

First, this paper examines in situ spectral data and demonstrates
the spectral variation in response to water depths. Second, we
developed the shallow water bio-optical properties (SBOP) algo-
rithm which incorporates the bottom contribution into a CDOM
retrieval algorithm. Third, we investigated the effectiveness of a
proposed bottom effect index (BEI) to quickly separate optically
shallow and optically deep waters. Finally, an adaptive approach
based on our BEI was presented to identify the most suitable algo-
rithm according to varied levels of bottom effect (optically shallow
or deep water algorithms) in an effort to reduce overall uncer-
tainty. This study aims to improve the capability of remote sensing
to monitor carbon transportation from terrestrial to aquatic
ecosystems across broad spatial and temporal scenarios.

2. Method

2.1. Study site

Saginaw Bay in Lake Huron was selected for sampling CDOM
levels concurrently with in situ remote sensing measurements
across a broad range of CDOM levels. The sampling locations
encompassed the Saginaw River, Kawkawlin River and inner Sagi-
naw Bay (Fig. 1). The bathymetry ranged from 0.25 to 4 m with a
median value of 1.6 m. Generally, the bottom is dominated by sand
with intermittent patches of benthic algae (Cladophora) and other
aquatic plants. Compared to that of pure sand, the sediments of the
lake bottom are relatively dark due to this mixture of the sand and
benthic plants. The two rivers mentioned above are of vastly differ-
ent size and composition and their drainage basins are covered by
different dominant vegetation. The Saginaw River is 36 km long
with a watershed area of 22,260 km2. The river has a mean annual
discharge of 130 m3/s (2010–2016). The dominant landcover type
is agriculture, which accounts for approximately 52% of the
watershed. The Kawkawlin River flows into the Saginaw Bay
approximately 1 km north of the Saginaw River mouth. Its length
(28 km), discharge and drainage area (647 km2) are at a significant
lower magnitude than those of the Saginaw River. The Kawkawlin
River watershed is dominated by deciduous forest (40.2%) with a
relatively high percentage of wetland (7.9%).

2.2. Field and laboratory measurements

A total of four cruises were carried out from 2012 to 2015. The
cruises covered both spring and autumn seasons: May 7, 2015,
May 7, 2013, May 10, 2012 and October 18, 2012. Field sampling
design used a spatially stratified method to distribute the sampling
locations at several water depth intervals within and near the river
plumes; 54 samples were collected (Fig. 1). The sample points were
distributed along five transects and sample locations were slightly
shifted due to the conditions present on each sampling date. The
water depths of 27 sampling locations were measured by a Vexi-
lar� Hand-held Depth Sonar during the cruise on May 7, 2015.
The depths of the earlier sampling locations were generated from
bathymetry contours downloaded from Michigan Geographic Data
Library (MiGDL). These generated depths have been verified by the
2015 field depth measures with a mean error of less than 10%.

Surface water samples and in situ spectral data were collected in
parallel at each sampling location. Water samples collected were
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