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This paper develops a novel Markov Random Field (MRF) model for edge-preserving spatial regularization
of classification maps. MRF methods based on the uniform smoothness lead to oversmoothed solutions.
In contrast, MRF methods which take care of local spectral or gradient discontinuities, lead to unexpected
object particles around boundaries. To solve these key problems, our developed MRF method first estab-
lishes a spatial energy function integrating local spectral dissimilarity to smooth the initial classification
map while preserving object boundaries. Second, a new anisotropic spatial energy function integrating
the class co-occurrence dependency is constructed to regularize pixels around object boundaries. The
effectiveness of the method is tested using a series of remote sensing data sets. The obtained results indi-
cate that the method can avoid oversmoothing and significantly improve the classification accuracy with
regards to traditional MRF classification models and some other state-of-the-art methods.
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1. Introduction

Remote sensing image classification, which aims to classify a
remotely sensed image into a thematic map, is a very active
research field. As more and more images with higher spatial reso-
lution became available, advanced classification methods utilize
not only the spectral, but also the spatial properties in order to
improve classification accuracy. In this context, a large collection
of spectral-spatial classification methods (Benediktsson et al.,
2005; Blaschke, 2010; Chen et al., 2016; Huang et al., 2014; Li
et al., 2013; Zhang and Jia, 2012; Zhang et al., 2006) have been
proposed.

Representative spatial features include pixel shape index
(Zhang et al, 2006), extended morphological profiles
(Benediktsson et al., 2005) and extended morphological attribute
profiles (Dalla Mura et al., 2011), among many others (Cheng and
Han, 2016; Fauvel et al., 2013). Another group of spatial-spectral
methods is known as object-based image analysis (OBIA)
(Blaschke, 2010; Walter, 2004; Zheng et al., 2013), which utilizes
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segments as basic units for extracting features. OBIA can suppress
the salt-and pepper noise that is often observed from pixelwise
classification results. Besides these hand-crafted spatial features,
features learnt automatically from input images, which are known
as deep learning-based methods (Chen et al., 2016, 2014; Hinton
and Salakhutdinov, 2006), became popular recently. These meth-
ods, typically convolutional neural network (Chen et al., 2016),
by simulating the processing of the primate visual system through
a deep hierarchy, can extract a series of low- and high-level fea-
tures. Both hand-crafted and learnt features make efforts on inte-
grating spatial information at feature extraction stage or during
the classification stage.

Recently, a number of works have developed strategies to inte-
grate the spatial information at the postprocessing stage, such as
relearning (Huang et al, 2014), object-based method
(Biischenfeld and Ostermann, 2012), filtering based method
(Kang et al., 2014), and Markov random fields (MRFs) (Aghighi
et al., 2014; Schindler, 2012; Tarabalka et al., 2010). These methods
generally rely on the common assumption that neighboring pixels
tend to belong to the same class.

Filtering methods impose a kernel on an initial label image
using a sliding window, and then assign each center pixel to an
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output value obtained according to the existing gray and/or label
values in the window. For instance, Kang et al. (2014) proposed
to use the guided filter to achieve edge-preserving smoothing of
the probabilistic map of an initial label image. Unfortunately, the
overall high accuracies are essentially achieved at the cost of over-
smoothed objected boundaries. Object-based  methods
(Biischenfeld and Ostermann, 2012) conduct (weighted) majority
voting over each image object to determine the resulting class to
be assigned to the object. During the voting process, the initial
probabilities of labels and the distance from the current pixel to
the corresponding object border are considered. However, the
effectiveness of object-based voting is also influenced by the per-
formance of segmentation algorithms. More recently, Huang
et al. (2014) have presented a new concept of relearning to smooth
the initial classification result. The goal is achieved by iteratively
updating the initial result according to the frequency and spatial
arrangement of the class labels.

Some MRFs (Aghighi et al., 2014; Li et al., 2012; Moser et al.,
2013; Tarabalka et al., 2010) can also be seen as postprocessing
methods, as they utilize neighbor label information to produce
smoothing effects on initial classification results. Under the
MAP-MRF framework, this optimization is formulated as the min-
imization of the class posterior probability, which is equivalent to
minimizing an energy function comprising the feature and label
models (Li, 2009). The feature model is related to features used
in the classification, and is often initialized by the output of a spec-
tral feature-based pixelwise classification (Schindler, 2012;
Tarabalka et al., 2010). Meanwhile, the label model is related to
the spatial prior of classes, which is formulated as a MRF (Moser
et al.,, 2013). In contrast, without modeling the feature and label
models individually, alternative MRF methods can directly express
the class posterior probability as a MRF (Li, 2009; Zhang and Jia,
2012). This group of MRFs is also named as conditional random
fields (CRFs).

Therefore, both groups belong to the random field model
assumed to exhibit the Markov property, and use the probability
function to model the spatial interactions between image sites.
Both of them assumes that the class labels and/or feature levels
in a neighborhood of the image lattice do not change abruptly. It
has been demonstrated that, even with this simple spatial prior,
MRF methods can perform quite well in terms of improving classi-
fication accuracy (Huang et al., 2014; Schindler, 2012; Zhong and
Wang, 2010). However, this generic smoothness prior also lead
to oversmoothed solutions when effective, i.e., the class boundaries
do not align with real object boundaries (Schindler, 2012;
Tarabalka et al., 2010; Zhang and Jia, 2012). The main reason is that
the uniform smoothness assumption is often violated at the image
boundaries, where abrupt changes of pixel values occur. Therefore,
several works have established more complex spatial a priori mod-
els involving local discontinuities, such as the derivative magni-
tude (Tarabalka et al., 2010; Yu and Clausi, 2008) or the spectral
difference (Moser et al., 2013). These models aim to suppress the
smoothness effect when the value of the term becomes larger
(often with high probability exactly corresponding to, or near real
boundaries). In this way, the models can effectively preserve edges.

Unfortunately, as shown in Figs. 8(a) and 12 (g), these state-of-
the-art MRF models involving local discontinuities, still suffer from
unexpected and isolated class labels around object boundaries,
where a salt-and-pepper noise effect can be appreciated. These
pixels located around boundaries have distinct spectral presenta-
tions with surrounding pixels. According to the MRF models, with
a high possibility, they are labelled as the class with the most sim-
ilar spectral property, rather than the spatial neighboring classes.
Whereas, in order to properly consider spatial dependency among
different land classes and obtain better visual inspection, we have
strong motivations to divide these pixels with different spectral

properties into the surrounding classes. For instance, in Fig. 8, pix-
els located between different crop types are expected to be recog-
nized as one of the adjacent types, rather than some other types
with similar spectral properties but long spatial distance.

From previous literature review, we can find that most of post-
processing optimization methods perform quiet well in homoge-
nous regions. A key aspect when utilizing optimizations is to
design a proper spatial model, which can deal with the features
and labels around object boundaries. An expected spatial regular-
ization method should refine an already classified map, smooth
labels in homogenous regions, meanwhile, align the boundaries
among different labels with real object boundaries.

In this context, this paper encodes spatial a priori assumptions
involving both spectral dissimilarity and class co-occurrence
dependency into two spatial energy functions, and results in a
new MRF method with two-step spatial regularization. The first
spatial energy function integrating local spectral dissimilarity is
to smooth the initial classification map while preserving object
boundaries. The second spatial energy function integrating the
class spatial dependency is constructed to further regularize pixels
around object boundaries. It is also our main contribution in this
research.

The rest of the paper is organized as follows. Section 2 presents
background on MRF-based methods intended to achieve spatial
smoothness. The proposed MRF method with two-step spatial reg-
ularization is presented in Section 3. Experimental results and dis-
cussions, analyzing the influence of different spectral dissimilarity
metrics and a detailed parameter sensitivity assessment, are pre-
sented in Section 4. Comparisons with some other state-of-the-
art methods are conducted in Section 5. Conclusions and hints at
plausible future research lines are given in Section 6.

2. Background on MRF-based methods to achieve spatial
smoothness

2.1. Notations and problem formulation

Let S denote the set of sites over which a remote sensing image I
is defined, and let Q ={1, 2, .. ., k} denote a set of labels, being k the
number of labels. Both the observation random field Y and the
label random field X are defined on S. The observed image
y = {y;|i € S} is a realization of the observation random field Y. A
label image x = {x;|i € S,x; € Q} is a realization of X, in which each
x; takes a value from Q denoting the class to which the site i
belongs.

The spatial regularization task performed by a pixelwise classi-

fication map is formulated as finding an optimal estimation x that
maximizes the posterior P(X|y) given the observed image y.
According to the Bayesian rule and the log-linear property, finding
the maximum a posteriori (MAP) solution X of P(X|y) (also called
optimal configuration) is equivalent to minimizing the following
two-part energy function (Li, 2009):

X = arg max(p(y|x)P(x)) = argmin(Ey + Ej) (1)
with
Er = —log(p(y[x)), (2)
and
E; = —log(P(x)). 3)

With the aforementioned formulation in mind, two issues need
to be addressed: (1) how to analytically represent the feature
model Ef and the label model E;, and (2) how to find a solution
for the objective function (1).
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