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a b s t r a c t

High-spatial and -temporal resolution snow cover maps for mountain areas are needed for hydrological
applications and snow hazard monitoring. The Chinese GF-1 satellite is potential to provide such infor-
mation with a spatial resolution of 8 m and a revisit of 4 days. The main challenge for the extraction of
multi-temporal snow cover from high-spatial resolution images is that the observed spectral signature
of snow and snow-free areas is non-stationary in both spatial and temporal domains. As a result, success-
ful extraction requires adequate labelled samples for each image, which is difficult to be achieved. To
solve this problem, a semi-supervised multi-temporal classification method for snow cover extraction
(MSCE) is proposed. This method extends the co-training based algorithms from single image classifica-
tion to multi-temporal ones. Multi-temporal images in MSCE are treated as different descriptions of the
same land surface, and consequently, each pixel has multiple sets of features. Independent classifiers are
trained on each feature set using a few labelled samples, and then, they are iteratively re-trained in a
mutual learning way using a great number of unlabelled samples. The main principle behind MSCE is that
the multi-temporal difference of land surface in spectral space can be the source of mutual learning
inspired by the co-training paradigm, providing a new strategy to deal with multi-temporal image clas-
sification. The experimental findings of multi-temporal GF-1 images confirm the effectiveness of the pro-
posed method.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Snow cover extent is an essential input for snow hydrological
models and snow hazard monitoring. Consequently, snow cover
maps have been extracted using Moderate Resolution Imaging
Spectroradiometer (MODIS) (Hall et al., 2002), Landsat Thematic
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) (Crawford
et al., 2013), Operational Landsat Imager (OLI) (Zhu et al., 2015)
images, and ground based digital camera (Bernard et al., 2013).
However, these sensors can unilaterally reach the high spatial or
temporal resolution required to capture the seasonal spatial and
temporal variations of snow cover. The new generation of satellites
in the form of a constellation, such as Europe’s Sentinel-2 and
China’s GF-1/6, can provide relatively high spatial resolution and

frequently revisited observations, thereby providing spatial and
temporal details of snow cover characteristics.

Current snow cover extraction approaches are mainly based on
the special spectral characteristics of snow, i.e. high reflectance at
visible wavelengths and low reflectance at shortwave-infrared
wavelengths (Warren, 1982). A series of thresholds based on Nor-
malized Difference Snow Index (NDSI) and/or spectral band ratio,
are sufficient to separate snow from snow-free (Dozier, 1989;
Hall et al., 1995; Riggs et al., 1994). Snow cover in mountain areas
in shadow has a large overlap with the snow-free region in the
spectral space (Dozier, 1989; Rosenthal and Dozier, 1996). Conse-
quently, topographic correction based on the digital elevation
model (DEM) is used to alleviate the influence of mountain shadow
(Dozier, 1989; Negi et al., 2009; Rosenthal and Dozier, 1996;
Sirguey et al., 2009). Alternatively, some studies apply shadow
masks achieved from DEM to exclude the shadow areas
(Selkowitz and Forster, 2016). To represent the subgrid snow cover
heterogeneities, empirical relationships based on NDSI
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(Salomonson and Appel, 2004, 2006) and subpixel unmixing mod-
els (Painter et al., 2009, 1998; Rosenthal and Dozier, 1996) are pro-
posed to produce fractional snow cover maps. In addition,
machining learning techniques, e.g. Artificial Neural Network and
Support Vector Machine (SVM), are applied to train more robust
models or classifiers for extracting both binary and fractional snow
cover (Dobreva and Klein, 2011; Simpson and McIntire, 2001; Zhu
et al., 2014).

Despite the great advance, it is still challenging to extract snow
cover from high-spatial and -temporal resolution remote sensing
images (HSTRRS). Commonly, shortwave-infrared wavelengths
are not covered by high-spatial resolution optical sensors. As a
result, subgrid snow cover heterogeneities become less critical
and NDSI is not available. Some indexes based on visible and
near-infrared bands provide promising alternatives for snow cover
extraction in plains (Hinkler et al., 2003, 2002) but cannot obtain
sound results in the mountain areas because of the severe influ-
ence of mountain shadow in HSTRRS. What’s worse, high-spatial
resolution DEM with satisfactory quality is not commonly accessi-
ble, making topographic correction difficult.

In our previous study (Zhu et al., 2014), a SVM based decision
tree was proposed to extract snow cover from a single high-
spatial resolution image without topographic correction, where
snow cover influenced by mountain shadow was treated as an
independent class in the classification procedure. Similar to most
of the classification methods, the main limitation of this method
is its heavy dependency on the quality of the ground-truth sam-
ples. Collecting a sufficient number of representative samples is
impractical. Moreover, even if a satisfactory classifier was trained
for an image with adequate samples, it cannot be directly applied
to other acquisitions, because the observed spectral distributions
of different images can be different for many reasons, e.g. varia-
tions in the observation geometry and mountain shadow. There-
fore, a more robust method without heavy dependency on
labelled samples and cumbersome topographic correction is
needed.

Domain adaptation (also known as transfer learning) is one of
the most promising methods to solve this problem. In the domain
adaptation paradigm, a strong classifier is trained for a specific
image (source domain) with adequate labelled samples and this
classifier is then applied to a new acquisition (target domain) with
the assistance of unlabelled samples (Liu and Li, 2014). This kind of
method has been used in remote sensing classifications (Kurtz
et al., 2014; Liu and Li, 2014), especially for the automatic updating
of land cover maps (Bahirat et al., 2012; Bruzzone and Marconcini,
2009; Matasci et al., 2015). The main challenge for the application
of this method to extract snow cover maps may be that it still
needs sufficient labelled samples for a specific image or at least a
part of an image.

Semi-supervised learning is another kind of promising
approach, which can use a few labelled samples together with
unlabelled samples to increase the reliability and accuracy of a
classifier. Four paradigms of semi-supervised learning are encoun-
tered in literature, i.e. generative models (Shahshahani and
Landgrebe, 1994), low density separation algorithms (Joachims,
1999; Vapnik, 1998), graph-based methods (Jordan, 1998), and
co-training algorithms (Blum and Mitchell, 1998). All these semi-
supervised methods have been successfully applied in remote
sensing classifications with a small group of labelled samples
(Bruzzone et al., 2006; Camps-Valls et al., 2007; Dalponte et al.,
2015; Jackson and Landgrebe, 2001; Tan et al., 2014). However,
these methods are merely suitable for the classification of single
images and needs to be extended to deal with the multi-
temporal classification.

In this study, we proposed a strategy to extend aforementioned
co-training (also known as multi-view learning) algorithms from

single image classification to multi-temporal ones so that a few
labelled samples are sufficient to extract snow cover maps from
multi-temporal images simultaneously. In the original concept of
co-training, the feature set (e.g. spectral or texture features in
terms of remote sensing data) should be split into two subsets,
where each subset should be sufficient for training a strong classi-
fier, and these classifiers are conditionally independent of each
other for a given class label (Blum and Mitchell, 1998). The process
of co-training is rather simple. Two classifiers are trained on two
subsets for the same task first. Then these classifiers provide each
other with labels for the unlabelled data. The unlabelled samples
here serve as a ‘‘platform” for information exchange (Zhou and
Li, 2010). Further studies showed that the assumption of two con-
ditionally independent feature subsets was not necessary (Wang
and Zhou, 2007). The key for the co-training approaches to succeed
is that there exists a large difference between the classifiers, while
it is not crucial in which the difference is introduced (Dasgupta
et al., 2002; Wang and Zhou, 2007). Many variants of co-training
have been proposed, e.g. an improved algorithm combining co-
training with Expectation-Maximization (Co-EM) (Nigam and
Ghani, 2000) and a further integration with SVM (Co-EM-SVM)
(Brefeld and Scheffer, 2004).

For the snow cover extraction, the multi-temporal images pro-
vide multiple descriptions (multiple feature subsets) of the same
snow cover area and these feature sets of snow cover can be differ-
ent for many reasons, e.g. ageing of snow, contamination caused by
dust, change of illumination, and observation geometry. As a result,
the classifiers respectively trained on different images have a large
difference, and the mutual learning based on the difference can,
therefore, be used to improve the reliability of classifiers. Fig. 1
depicts the relationship between the conception of original co-
training methods and the multi-temporal extension one for snow
cover extraction from HSTRRS. It is expected that a few labelled
samples are sufficient to extract snow cover from HSTRRS simulta-
neously by using the multi-temporal extension of co-training.

However, several issues should be carefully considered in the
use of the multi-temporal extension of co-training methods. While
different feature subsets split from one feature set naturally have
the same labels in the co-training methods, it is not true in
multi-temporal cases because of the possible transition between
the snow and snow-free areas in different acquisitions. In addition,
there are a large number of unlabelled samples in remote sensing.
A selection procedure is necessary to choose proper unlabelled
samples that can enhance the mutual learning. Furthermore, the
co-training methods are inherent two-class methods. Further
extension is needed to deal with the multi-temporal multi-class
problems. In this study, these issues are addressed to extend the
Co-EM-SVM from a single image classification to a multi-
temporal one. It is worth noting that other co-training algorithms
can also be extended to multi-temporal methods in a similar way.

The rest of this paper is organized in six sections. A brief intro-
duction to Co-EM-SVM, followed by the proposed method, is pre-
sented in Section 2. The study area and data are described in
Section 3. In Section 4, the experimental design is introduced.
The performance of the proposed method is evaluated in Section 5.
Sections 6 and 7 are discussions and conclusions, respectively.

2. Methodology

2.1. Co-EM-SVM

Co-EM-SVM (Brefeld and Scheffer, 2004) is an improved variant
of co-training (Blum and Mitchell, 1998) and Co-EM (Nigam and
Ghani, 2000). In Co-EM-SVM, the available feature set V of a data
set is split into disjoint sets V1 and V2 (Vi is a collection of some
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