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a b s t r a c t

This paper presents a novel strategy to generate, from 3-D lidar measures, dense depth and reflectance
images coherent with given color images. It also estimates for each pixel of the input images a visibility
attribute. 3-D lidar measures carry multiple information, e.g. relative distances to the sensor (from which
we can compute depths) and reflectances. When projecting a lidar point cloud onto a reference image
plane, we generally obtain sparse images, due to undersampling. Moreover, lidar and image sensor posi-
tions typically differ during acquisition; therefore points belonging to objects that are hidden from the
image view point might appear in the lidar images. The proposed algorithm estimates the complete depth
and reflectance images, while concurrently excluding those hidden points. It consists in solving a joint
(depth and reflectance) variational image inpainting problem, with an extra variable to concurrently esti-
mate handling the selection of visible points. As regularizers, two coupled total variation terms are
included to match, two by two, the depth, reflectance, and color image gradients. We compare our algo-
rithm with other image-guided depth upsampling methods, and show that, when dealing with real data,
it produces better inpainted images, by solving the visibility issue.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Image-based 3D reconstruction of static and dynamic scenes
(Seitz et al., 2006; Herbort and Wöhler, 2011; Stoykova et al.,
2007) is one of the main challenges in computer vision nowadays.
In the recent years many efforts have been made to elaborate con-
figurations and approaches, possibly requiring the employment of
multiple sensors, with the final goal of generating plausible and
detailed 3D models of scenes. To this end, typical optical cameras
are often combined with non-visual sensors. The intermediate out-
puts of these hybrid systems, prior to the final scene rendering, are
in general depth or depth + color images (RGB-D). Among the non-
visual sensors, we can find Time-of-Flight (ToF) cameras (Kolb
et al., 2010), which acquire low-resolution co-registered depth
and color images at a cheap cost, and the famous Kinect (Zhang,
2012), capable to extract depth information by exploiting struc-

tural light. Another possibility is represented by lidar devices,
which are used in a variety of applications and provide as output
point clouds with measures of distance and reflectivity of the
sensed surfaces.

This work lies in the context described and is particularly driven
by the exploitation of data acquired by Mobile Mapping Systems
(MMS), such as Paparoditis et al. (2012). MMS systems are vehicles
equipped with high-resolution cameras and at least one lidar sen-
sor: their contained dimensions allow them to be driven through
regular streets and acquire data of urban scenes. The data acquired
is a set of calibrated and geolocated images, together with coherent
lidar point clouds. The interest towards them comes from the pos-
sibility of having available, at a relatively small processing cost, the
combination of depth and color information, without having to
perform explicit (error-prone) reconstructions. Having a good
depth estimate at each pixel, for example, would enable the possi-
bility to perform depth-image-based rendering algorithms, e.g.
Zinger et al. (2010), Chen et al. (2005), Schmeing and Jiang
(2011). Similarly, the availability of depth information allows the
insertion of virtual elements into the image, such as pedestrians
or vehicles generated by a traffic simulation (Brédif, 2013). While
MMS data sets do not include directly depth images aligned with
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the available color images, it is easy, by exploiting the known
geometry, to project the lidar point clouds onto each image. This
operation produces initial depth images, which present three main
issues (see Fig. 1, where three parts of an input depth image are
shown, together with the corresponding image parts).

1. Undersampling: since lidar and image acquisitions are deeply
different in terms of geometry and characteristics, the resulting
depth images turn to be irregular. No points are present in the
sky and on reflective surfaces. Moreover, the point density,
which depends on the variable distances between the camera
image plane and the positions of the lidar sensor, is generally
significantly smaller than the pixel resolution. We can therefore
talk about sparse input depth images (see for example Fig. 1a,
showing the low density of lidar points from the ground).

2. Visibility (hidden parts appear): since points that are not visible
from the image view point (hidden points) can be occasionally
‘‘seen” by the moving lidar sensor, erroneous values referring to
such points can appear in the input depth image. This occurs
even when a Z-buffer approach (Greene et al., 1993) is used,
i.e. only the closest depth values for each pixel are kept (in case
multiple values end up in the same pixel location). E.g., Fig. 1 b
shows that depth values from the building behind appear as
foreground points.

3. Occlusions (visible parts disappear): for the same reason as
above, i.e. the different acquisition timing and geometry
between image and lidar sensors, surfaces normally visible
from the image view point do not get a corresponding depth.
This can happen when the lidar sensor suffers occlusions at a
given instant or because of the scene dynamics. E.g., in Fig. 1c,
a moving bus that is not present at the moment of the image
shot happens to appear in the depth image.

While there is a variety of methods in the literature that deal
with the first issue, i.e. that aim at upscaling an irregular input
depth image possibly with the guidance of a corresponding color
image, little work has been performed to address the last two
issues. In this paper, while inpainting the input depth image, we
also intend to tackle the visibility problem. Moreover, we treat at
the same time an additional input: a sparse reflectance image
derived in the same way as the input depth image (i.e., by naively
projecting the lidar point cloud, considering the reflectance infor-
mation carried out by each point). We will show that the simulta-

neous use of a reflectance image, which is inpainted jointly with
the depth, improves the quality of the produced depth image itself.
To jointly inpaint depth and reflectance and concurrently evaluate
the visibility of each point (i.e. establish if a single point is reliable
or, since non-visible, must be discarded), we formulate an opti-
mization problem with three variables to estimate: depth, reflec-
tance and a visibility attribute per pixel. The inpainting process
is also guided by the available color image, by means of a twofold
coupled total variation (TV) regularizer.

The remainder of the paper is organized as follows. In Section 2,
we present our approach and mention the related works, in partic-
ular on the image-guided depth inpainting problem. In Sections 3
and 4 we describe the model used and the primal-dual optimiza-
tion algorithm that arises, respectively. Finally, in Section 5 we
bring experimental evidence that proves the effectiveness of the
proposed approach.

2. Problem addressed and related work

Fig. 2 depicts the scheme of the proposed approach. Given an
MMS data set consisting of a lidar point cloud and a set of camera
images, we choose among the latter a reference color image (w),
and we obtain input depth (uS) and reflectance (rs) images by re-
projecting the lidar points according to the image geometry. The
two lidar-originated images are sparse images with irregular sam-
pling and need to be inpainted. We propose to do that jointly and
simultaneously estimate the visibility of the input points, within a
variational optimization framework. The output of the algorithm
are then three: the inpainted depth and reflectance (u and r,
respectively), and a binary image expressing the visibility at each
point (v).

In the literature there is a variety of methods that aim at upscal-
ing or inpainting an original sparse depth image. Most of them are
presented in the context of ToF cameras; thus, a high quality color
image is acquired at the same time and can be exploited. We refer
to this problem as image-guided depth inpanting. The typical
assumption, when exploiting the available image, is that image
edges are related to depth edges. Following this principle, many
approaches have been proposed, such as methods using different
versions of multilateral filtering (Chan et al., 2008; Yang et al.,
2013; Garcia et al., 2010), methods based on Markov Random
Fields (Diebel and Thrun, 2005), and methods using Non-Local
Means (Park et al., 2011; Huhle et al., 2010). Another family relates

(a) Undersampling (b) Visibility (c) Occlusions

Fig. 1. Examples of parts from a resulting input depth image (bottom row), with the corresponding parts from the reference color image (top row), showing the three issues
mentioned: undersampling, appearance of hidden points, and presence of occlusions.
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