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a b s t r a c t

The automation of agricultural mapping using satellite-derived remotely sensed data remains a challenge
in Africa because of the heterogeneous and fragmental landscape, complex crop cycles, and limited access
to local knowledge. Currently, consistent, continent-wide routine cropland mapping of Africa does not
exist, with most studies focused either on certain portions of the continent or at most a one-time effort
at mapping the continent at coarse resolution remote sensing. In this research, we addressed these lim-
itations by applying an automated cropland mapping algorithm (ACMA) that captures extensive knowl-
edge on the croplands of Africa available through: (a) ground-based training samples, (b) very high (sub-
meter to five-meter) resolution imagery (VHRI), and (c) local knowledge captured during field visits and/
or sourced from country reports and literature. The study used 16-day time-series of Moderate
Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) compos-
ited data at 250-m resolution for the entire African continent. Based on these data, the study first pro-
duced accurate reference cropland layers or RCLs (cropland extent/areas, irrigation versus rainfed,
cropping intensities, crop dominance, and croplands versus cropland fallows) for the year 2014 that pro-
vided an overall accuracy of around 90% for crop extent in different agro-ecological zones (AEZs). The
RCLs for the year 2014 (RCL2014) were then used in the development of the ACMA algorithm to create
ACMA-derived cropland layers for 2014 (ACL2014). ACL2014 when compared pixel-by-pixel with the
RCL2014 had an overall similarity greater than 95%. Based on the ACL2014, the African continent had
296 Mha of net cropland areas (260 Mha cultivated plus 36 Mha fallows) and 330 Mha of gross cropland
areas. Of the 260 Mha of net cropland areas cultivated during 2014, 90.6% (236 Mha) was rainfed and just
9.4% (24 Mha) was irrigated. Africa has about 15% of the world’s population, but only about 6% of world’s
irrigation. Net cropland area distribution was 95 Mha during season 1, 117 Mha during season 2, and
84 Mha continuous. About 58% of the rainfed and 39% of the irrigated were single crops (net cropland
area without cropland fallows) cropped during either season 1 (January-May) or season 2 (June-
September). The ACMA algorithm was deployed on Google Earth Engine (GEE) cloud computing platform
and applied on MODIS time-series data from 2003 through 2014 to obtain ACMA-derived cropland layers
for these years (ACL2003 to ACL2014). The results indicated that over these twelve years, on average: (a)
croplands increased by 1 Mha/yr, and (b) cropland fallows decreased by 1 Mha/year. Cropland areas com-
puted from ACL2014 for the 55 African countries were largely underestimated when compared with an
independent source of census-based cropland data, with a root-mean-square error (RMSE) of 3.5 Mha.
ACMA demonstrated the ability to hind-cast (past years), now-cast (present year), and forecast (future
years) cropland products using MODIS 250-m time-series data rapidly, but currently, insufficient refer-
ence data exist to rigorously report trends from these results.
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1. Introduction

The extent, distribution, and characteristics (e.g., irrigation ver-
sus rainfed, cropping intensity, crop types) of croplands are factors
that have long been identified as fundamental influences on agri-
cultural development pathways, food security scenarios, and pov-
erty reduction (Jayne et al., 2014). Estimates show that 52% of
the world’s remaining arable land is in Africa, yet most of this land
is concentrated in just eight countries (Algeria, Democratic Repub-
lic of the Congo, Ethiopia, Morocco, Nigeria, South Africa, Sudan,
Uganda), while a number of the remaining countries contain large
rural populations clustered in remarkably small areas (Chamberlin
et al., 2014). Demography of Africa is projected to change exponen-
tially, where the population is expected to increase from the cur-
rent 1.2 billion to nearly 4 billion by the end of the century
(Gerland et al., 2014). A quarter of the population is undernour-
ished and many countries experience famines in sub-Saharan
Africa (Clover, 2010). In this context, timely and dependable infor-
mation on agricultural croplands of Africa is a prerequisite neces-
sity to (i) isolate the agricultural croplands to assess crop water
use, crop productivity, and crop water productivity, and (ii) inves-
tigate how the croplands respond to different climatic conditions
(Waldner et al., 2015).

Global land use/land cover (LULC) products such as global land
cover 2000 (Giri et al., 2005), GlobCover 2005/2009 (Arino et al.,
2007), Global Land Cover-SHARE (Latham et al., 2014), and MODIS
(Moderate Resolution Imaging Spectroradiometer) Land Cover
(Friedl et al., 2002) do have cropland classes. However, to use these
products as accurate and reliable cropland estimation for the prac-
tical purpose is questionable. For example, Cropland estimates
derived from GlobCover are 20% higher than those derived from
MODIS globally (Fritz et al., 2011a,b). Further, the spatial location
of the croplands between any two of these global LULC products
varies substantially. These factors have led to differences in crop-
land areas between various products which is as much as stagger-
ing 300 Mha globally (varying from 1.5 to 1.8 billion hectares). For
example, the Food and Agricultural Organization (FAO) of the Uni-
ted Nations (UN) estimates that, around the year 2010, there was
319 Mha of croplands in Africa compared to the significantly lower
MODIS land cover and GlobCover estimates of 277 Mha and
152 Mha, respectively. There are many reasons for such differences
such as 1. these products are more focused on LULC systems than
on agricultural systems, 2. definition issues, 3. resolution of the
data used, 4. other data characteristics (e.g., spectral, radiometric),
and 5. Methods adopted. Further, in these products croplands are
not a single land cover class, but are contained within the mosaic
of classes without specific agricultural information such as irriga-
tion, cropping intensity, or crop type. All of these factors lead to
substantial uncertainties in cropland assessment and related prod-
ucts of cropland water use and food security assessment and
reporting.

Further, there are several cropland studies. Time-series remo-
tely sensed data are established as effective tool in cropland map-
ping (Esch et al., 2014) and have been successfully implemented at
regional-scale (Bégué et al., 2014; Ding et al., 2014; Gumma et al.,
2014; Helmholz et al., 2014; Teluguntla et al., 2015a,b) as well as at
global scale (Chen et al., 2015; Pittman et al., 2010; Radoux et al.,
2014; Salmon et al., 2015; Thenkabail and Wu, 2012; Wang
et al., 2015). Various aspects of croplands are mapped such as irri-

gated areas (Conrad et al., 2016; PeñArancibia et al., 2016; Salmon
et al., 2015; Thenkabail and Wu, 2012), rainfed areas (Biradar et al.,
2009; Salmon et al., 2015), cropping intensities (Qiu et al., 2014),
and crop types (Gumma et al., 2014; Zhang et al., 2015; Zhong
et al., 2014; Zhou et al., 2016), and cropland fallows (Müller
et al., 2015). There are many methods and techniques adopted
for cropland classification that include phenology based algorithms
(Dong et al., 2015; Jeganathan et al., 2014; Pan et al., 2015), classi-
fication regression trees (Deng and Wu, 2013; Egorov et al., 2015;
Ozdogan and Gutman, 2008), decision tree algorithms (Friedl and
Brodley, 1997; Shao and Lunetta, 2012), Fourier harmonic analysis
(Zhang et al., 2015), spectral matching techniques (Dheeravath
et al., 2010), support vector machines (Mountrakis et al., 2011),
random forest algorithm (Tatsumi et al., 2015) and a number of
other machine learning algorithms (DeFries, 2000; Duro et al.,
2012; Lary et al., 2016; Pantazi et al., 2016). Many studies adopted
supervised and unsupervised classification approaches. Supervised
methods (Egorov et al., 2015) rely extensively on in situ data or on
human interpretation of spectral signatures, making the classifica-
tion process resource-intensive, time-consuming, and difficult to
repeat over space and time (Zhong et al., 2014). So, when rich sets
of in situ data are lacking, as is often the case in Africa, supervised
approaches lead to uncertainties. Unsupervised approaches require
far less in situ data or human interpretation but they require large
volumes of in situ data for class identification and validation data.

Specific to continental Africa, amongst existing cropland prod-
ucts there has been large disagreement (Fritz and See, 2008; Giri
et al., 2005; Hansen and Reed, 2010; Herold et al., 2008;
McCallum et al., 2006) especially in the extent of the cultivated
areas and their spatial distribution (Fritz et al., 2011a; Salmon
et al., 2015; Teluguntla et al., 2015a,b; Thenkabail and Wu, 2012;
Waldner et al., 2015) as a result of fragmented and heterogeneous
rural landscapes (Lobell and Asner, 2004) and low agricultural
intensification (Pittman et al., 2010) throughout continental Africa.
The challenges of mapping cropland in Africa also include: (a) spa-
tial structure of the agricultural landscape (Vancutsem et al., 2012),
(b) spectral similarity with grassland, mainly in arid and semi-arid
areas (Herold et al., 2006; McCallum et al., 2006), (c) high regional
variability in terms of agricultural systems and calendars between
the hyper-arid Sahara and other agro-ecological zones (Vintrou
et al., 2012).

Further, the current state-of-art using the above methods and
approaches is mostly limited to producing cropland products for
a given period, or for a growing season, or for a particular year.
However, such a process over very large areas such as continent
will always have limitations in availability of extensive collection
of reference data. The biggest difficulty in cropland mapping is in
the lack of algorithms that accurately reproduce cropland products
year after year or season after season. So, more recently, there are
efforts at producing cropland products by developing automated
algorithms (Jamali et al., 2014; Waldner et al., 2015; Yan and
Roy, 2014). Thenkabail et al. developed rule-based ensemble
decision-tree Automated Cropland Classification algorithms
(ACCA’s) to produce cropland versus non-croplands across years
for Australia, Tajikistan and California (Teluguntla et al., 2017;
Thenkabail and Wu, 2012; Wu et al., 2014). Waldner et al. (2015)
used a baseline map generated from five knowledge-based tempo-
ral features to train an automated support vector machines (SVM)
classifier on selected areas in Argentina, Belgium, Ukraine, and
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