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a b s t r a c t

The generally limited availability of training data relative to the usually high data dimension pose a great
challenge to accurate classification of hyperspectral imagery, especially for identifying crops character-
ized with highly correlated spectra. However, traditional parametric classification models are problem-
atic due to the need of non-singular class-specific covariance matrices. In this research, a novel sparse
graph regularization (SGR) method is presented, aiming at robust crop mapping using hyperspectral ima-
gery with very few in situ data. The core of SGR lies in propagating labels from known data to unknown,
which is triggered by: (1) the fraction matrix generated for the large unknown data by using an effective
sparse representation algorithm with respect to the few training data serving as the dictionary; (2) the
prediction function estimated for the few training data by formulating a regularization model based
on sparse graph. Then, the labels of large unknown data can be obtained by maximizing the posterior
probability distribution based on the two ingredients. SGR is more discriminative, data-adaptive, robust
to noise, and efficient, which is unique with regard to previously proposed approaches and has high
potentials in discriminating crops, especially when facing insufficient training data and high-
dimensional spectral space. The study area is located at Zhangye basin in the middle reaches of Heihe
watershed, Gansu, China, where eight crop types were mapped with Compact Airborne Spectrographic
Imager (CASI) and Shortwave Infrared Airborne Spectrogrpahic Imager (SASI) hyperspectral data.
Experimental results demonstrate that the proposed method significantly outperforms other traditional
and state-of-the-art methods.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Crop mapping is vital for agriculture resources monitoring
(Becker-Reshef et al., 2010), crop yield evaluation (Doraiswamy
et al., 2004), and precision agriculture (Yang et al., 2013). Hyper-
spectral remote sensing sensors can capture contiguous and dense
spectra (i.e., usually hundreds of spectral bands with the wave-
length width finer than 10 nm) for the same object on the Earth’s
surface (Chang, 2003), which provide plenty of useful information
for the analysis and interpretation of spectrally similar materials of

interest. In this context, hyperspectral data have great potential in
accurate identification of crops.

Hyperspectral remotely sensed imagery (HSI) has been exten-
sively applied to crop mapping in the literature. Some traditional
parametric classification models, which assume that the input data
should obey certain parametric probability distribution, including
Gaussian maximum likelihood (Foody et al., 1992), Shannon
entropy (Foody, 1995), and discriminant analysis (Galvao et al.,
2009; Mariotto et al., 2013; Thenkabail et al., 2013) have been used
for pixel-wise classification. However, shortcomings occur when
the assumption of parametric probability distribution of the input
data is not hold. To this end, non-parametric classification models
are more advocated, like distance metric based methods (Rao,
2008; Ran et al., 2015), artificial neural network (Foody, 1996;

http://dx.doi.org/10.1016/j.isprsjprs.2016.12.003
0924-2716/� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Jiangsu Provincial Key Laboratory of Geographic
Information Science and Technology, Nanjing University, Nanjing 210023, China.

E-mail address: dupjrs@gmail.com (P. Du).

ISPRS Journal of Photogrammetry and Remote Sensing 124 (2017) 1–15

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2016.12.003&domain=pdf
http://dx.doi.org/10.1016/j.isprsjprs.2016.12.003
mailto:dupjrs@gmail.com
http://dx.doi.org/10.1016/j.isprsjprs.2016.12.003
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


Eddy et al., 2008; Zhang andWu, 2011), niche hierarchical artificial
immune system (Senthilnath et al., 2013), and Support Vector
Machine (SVM) with Gaussian kernel function (Foody and
Mathur, 2004; Camps-Valls et al., 2004; Mathur and Foody, 2008;
Munoz-Mari et al., 2010). Other methods are prone to combining
field reflectance measurements (Nidamanuri and Zbell, 2011) and
LiDAR data (Koenig et al., 2015), etc.

Although elegant performance has been obtained by using these
methods, some possible drawbacks are still existing. On the one
hand, the good performance of these methods is usually guaran-
teed with large number of training data. However, the training data
mainly come from imagery interpretation facilitated with in situ
investigation, which is expensive, time consuming, and difficult,
thus making the available training data very limited in practice.
On the other hand, most of the current methods were not designed
to address the curse of dimensionality issue of HSI. The generally
limited availability of training samples relative to the usually high
data dimension makes accurate classification of HSI an ill-posed
problem (Jackson and Landgrebe, 2002), resulting in the risk of
overfitting of the training data and poor generalization capability
of the classifier. In this context, it calls for the development of
new methods for accurate crop mapping, especially in the absence
of sufficient training data and in the scenario of facing high-
dimensional spectral space.

Regularization has emerged as a promising paradigm imposed
on classifier to prevent it from overfitting in the context of few
training data in conjunction with high-dimensional spectral space
(Camps-Valls et al., 2014). SVM (Cortes and Vapnik, 1995) natu-
rally equips with regularization through the concept of maximum
margin (i.e., an ‘2-norm regularizer is adopted in SVM), which is no
doubt the most widely used classification method in this commu-
nity (Camps-Valls and Bruzzone, 2009). However, in order to pro-
duce satisfied result, parameter tuning (i.e., cross-validation) is
necessary for SVM, which deteriorates the intensive computation
issue of the method, especially when dealing with high-
dimensional spectral space. Despite Cortes and Vapnik (1995)
argued that SVM is resistant against the dimensionality of the
input data and classifies well even with few training data, recent
study showed that the dimensionality can significantly affect the
classification accuracy (Waske et al., 2010). Therefore, limitations
in efficiency and accuracy may be experienced when using SVM.
Other regularization-based classifiers include regularized linear
discriminant analysis (Bandos et al., 2009), Gaussian process based
classification (Bazi and Melgani, 2010), relevance vector machine
(Mianji and Zhang, 2011), multinomial logistic regression (Li
et al., 2011), and sparse methods (Chen et al., 2011; Chen et al.,
2013; Zhang et al., 2014; He et al., 2014; Fang et al., 2014; Song
et al., 2014; Xue et al., 2015b; Feng et al., 2014; Zhong et al.,
2016; Feng et al., 2016), etc. In spite of good performance of these
methods, additional information such as non-linearity and homo-
geneity should be considered in the regularization process, which
can greatly improve the generalization performance of the
classifier.

Recently, graph regularization opens up new opportunities for
HSI classification. In graph regularization based methods, an undi-
rected weighted graph is built by treating samples (both labeled
and unlabeled) as vertices, whereas the pairwise similarities
between the vertices are regarded as edges. The few vertices carry-
ing class label information are used to predict labels for others via
label propagation which assumes label smoothness over the graph
(Liu et al., 2012). Graph regularization based methods are non-
parametric, discriminative, and capable of modeling the non-
linearity (or the manifold data structures) hidden in HSI. Several
studies have exploited graph regularization for HSI classification.
The pioneering work belongs to Camps-Valls et al. (2007) who
employed a graph transduction method, and they further incorpo-

rated kernel method and the spatial information to improve the
classification performance. Later, Gomez-Chova et al. (2008)
adopted a Laplacian support vector machine for multi-spectral
imagery classification, where SVM was regularized by graph Lapla-
cian. Similarly, Li et al. (2010) adopted graph Laplacian to regular-
ize the regressors of multinomial logistic regression. Although
good classification performance has been observed by these meth-
ods, most of them scale poorly with data size due to the high com-
putational complexity. For example, the time costs for these
studies carried out by Camps-Valls et al. (2007), Gomez-Chova
et al. (2008), and Li et al. (2010) are respectively, OðN3Þ (N is the
total number of pixels in the imagery), OðN3Þ, and OðCBðN0 þ BÞÞ
(C is the number of classes, B is dimensionality, and N0 is the num-
ber of training data), which are huge for HSI (i.e., N = 278,139 for
the CASI/SASI data used in our study).

More recently, sparse representation (SR) (Wright et al., 2009)
has been exploited in graph construction, where the graph struc-
ture and the similarity matrix are simultaneously obtained. To this
end, each sample is sparsely represented as a linear summation of
the rest by minimizing an ‘0 (or its variants) problem. A sparse
graph can capture both the local structure and the discriminative
information of data, which are very useful for clustering, subspace
learning, and semisupervised learning (Cheng et al., 2010).

The objective of this research is to develop a novel sparse graph
regularization (SGR) method with particular emphasis on address-
ing robust and efficient crop mapping problems in the context of
very few in situ data coupled with high-dimensional spectral space.
To this end, the sparse unmixing by variable splitting and aug-
mented Lagrangian (SUnSAL) algorithm (Bioucas-Dias and
Figueiredo, 2010) was adopted to obtain the fraction matrix gener-
ated for the input data with respect to dictionary (few training
data). The sparse graph and graph Laplacian matrix are obtained
based on the fraction matrix. Next, the predict function estimated
for dictionary is obtained by optimizing a typical graph regulariza-
tion problem embedded with an inductive model inspired from
anchor graph regularization (AGR) (Liu et al., 2012). Finally, the
inductive model propagates labels from few training data to large
unknown data based on the fraction matrix and the prediction
function. In addition, graph cuts (Boykov et al., 2001) is used for
incorporating spatial information, which improves the homogene-
ity of the final crop map. In SGR, the sparsity inherits from the
sparse graph built using SR, i.e., the SUnSAL algorithm. Different
from the traditional graph where the vertexes are densely linked
to each other (e.g., the commonly used full-link graph built from
Gaussian kernel), those vertexes will be sparsely linked when
building a sparse graph.

Compared to AGR, the proposed SGR method is more discrimi-
native, data-adaptive, robust to noise, and efficient with time cost
of OðK2 iterationÞ (K is the number of training data), which is very
powerful and well adapted to HSI without complex parameter tun-
ing. Note that, it is unique with regard to previously proposed
approaches in this area. It will be shown in this research that
SGR provides more accurate crop classification map compared to
other traditional classifiers as well as AGR. In addition, our previ-
ous studies have validated the good performance of: (1) SUnSAL
for HSI decomposition (Xue et al., 2015b); (2) SUnSAL with total
variation for HSI classification (Du et al., 2015b); (3) sparse graph
for HSI feature extraction (Xue et al., 2015). These studies and con-
clusions consolidated the theoretical and technical basis of the pro-
posed method. Although this research focuses on crop mapping,
the proposed method is quite general and can be extended to other
domains.

The remainder of this paper is organized as follows. Section 2
illustrates the study area, hyperspectral data, and the pre-
processing procedures. Section 3 presents in detail the mechanism
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