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a b s t r a c t

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from
different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers
re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer
models across image acquisitions, one must be able to cope with datasets that are not co-registered,
acquired under different illumination and atmospheric conditions, by different sensors, and with scarce
ground references. Traditionally, methods based on histogram matching have been used. However, they
fail when densities have very different shapes or when there is no corresponding band to be matched
between the images. An alternative builds upon manifold alignment. Manifold alignment performs a mul-
tidimensional relative normalization of the data prior to product generation that can cope with data of
different dimensionality (e.g. different number of bands) and possibly unpaired examples. Aligning data
distributions is an appealing strategy, since it allows to provide data spaces that are more similar to each
other, regardless of the subsequent use of the transformed data. In this paper, we study a methodology
that aligns data from different domains in a nonlinear way through kernelization. We introduce the Kernel
Manifold Alignment (KEMA) method, which provides a flexible and discriminative projection map,
exploits only a few labeled samples (or semantic ties) in each domain, and reduces to solving a general-
ized eigenvalue problem. We successfully test KEMA in multi-temporal and multi-source very high res-
olution classification tasks, as well as on the task of making a model invariant to shadowing for
hyperspectral imaging.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Many real-life problems currently exploit heterogeneous
sources of remote sensing data: forest ecosystems studies (Asner
et al., 2005; Asner et al., 2006; Roth et al., 2015), post-
catastrophe assessment (Brunner et al., 2010; Taubenböck et al.,
2011) or land-use updating (Bruzzone and Fernandez-Prieto,
2001; Nielsen, 2002; Amorós-López et al., 2016) take advantage
of the wide coverage and short revisit time of remote sensing sen-
sors. In these works, specific image processing pipelines are
designed to produce maps of a product of interest. Despite the pro-
mises of remote sensing to tackle such ambitious problems, two
main obstacles prevent this technology from reaching a broader

range of applications: on the one hand, there is generally a lack
of labeled data present at each acquisition and, on the other hand,
the models need to be capable of dealing with images obtained
under different conditions and potentially with different sensors.

Working under label scarcity has been extensively considered
in recent remote sensing image processing literature by means of
optimizing the use of the few available labels (Camps-Valls et al.,
2014). In our view, the problem of adapting remote sensing classi-
fiers boils down to compensating for a variety of distortions and
mis-alignments: for example, data resolution may differ or sea-
sonal conditions might offer remarkable differences in the spectral
signatures observed. When the images cover the same area, regis-
tration can be approximate. Moreover, each scene depends on its
particular illumination and viewing geometry, which causes spec-
tral signatures to shift among acquisitions (Matasci et al., 2015). As
a consequence, it becomes difficult, often impossible, to re-use
field data acquired on a given campaign to process newly acquired
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images. Transferring models from one remote sensing image acqui-
sition to the other can be a very challenging task.

Adapting classifiers to (even slightly) shifted data distributions
is an old problem in remote sensing, which started in the 1970s
with the signature extension field (Fleming et al., 1975; Olthof
et al., 2005), and then evolved, due to the technological advances
in both sensor and processing routines, into what is generally
referred to as the transfer learning problem (Pan and Qiang, 2010;
Patel et al., 2015). By transfer learning, we mean all kind of
methodologies aiming at making models transferable across
image/data acquisitions. In recent remote sensing literature, works
have mainly considered three research directions (Tuia et al.,
2016): (1) unifying the data representation, for example via atmo-
spheric correction (Guanter et al., 2009), feature selection
(Bruzzone and Persello, 2009), or feature extraction (Volpi et al.,
2015; Sun et al., 2016b; Sun et al., 2016a); (2) incorporating invari-
ances in the classifier, for example via synthetic (‘virtual’) exam-
ples (Izquierdo-Verdiguier et al., 2013) or physically-inspired
features (Pacifici et al., 2014; Verrelst et al., 2010); and (3) adapting
the classifier to cope with the shift among acquisitions, for exam-
ple via semi-supervised-inspired strategies (Rajan et al., 2006;
Bruzzone and Marconcini, 2010) or active learning (Matasci et al.,
2012).

Most of the methodologies above rely on the fact that all images
are acquired by the same sensor (i.e. they share the same d-
dimensional data space, as well as the nature -and physical
meaning- of the features), or that all information and know-how
necessary to convert to surface reflectance is available to the user
performing the analysis, which is unfortunately often not the case.
Moreover, at the application level there is generally no require-
ment of sticking to a specific sensor (taking the example of post-
catastrophe intervention, the fact of waiting for the next cloud-
free image of a specific sensor can mean the loss of human lives):
since more and more images are currently available to the general
public and organizations, new transfer learning approaches must
be capable of unifying data from different sensors, at different res-
olutions, without co-registration, and without being specific to a
given end classifier (Gómez-Chova et al., 2015). The recently pro-
posed manifold alignment methods gather all these properties.

Manifold alignment (Wang et al., 2011) is a machine learning
framework aiming at matching, or aligning, a set of domains (the
images) of potentially different dimensionality using feature
extraction under pairwise proximity constraints (Ham et al.,
2005). In some sense, manifold alignment performs registration
in the feature space and matches corresponding samples, where
the correspondence is defined by a series of proximity graphs
encoding some prior knowledge of interest (e.g. co-location, class
consistency). An intuition of how manifold alignment functions is
provided in Fig. 1. Its application to remote sensing data is rela-
tively recent: in Tuia et al. (2014), authors presented the semi-
supervised manifold alignment method (SSMA), which gathers all
properties above, but at the price of requiring labeled pixels in
all domains to perform the alignment. Yang and Crawford
(2016b) study issues of spatial consistency and in Yang and
Crawford (2016a) they propose a multi-scale alignment procedure
not relying on labels in all domains. Finally, true color visualization
for hyperspectral data was tackled in Liao et al. (2016).

In this paper, we study the effectiveness of the nonlinear coun-
terpart of SSMA, the Kernel Manifold Alignment (KEMA, Tuia and
Camps-Valls (2016)), as well as its relevance for remote sensing
problems. KEMA is a flexible, scalable, and intuitive method for
aligning manifolds. KEMA provides a flexible and discriminative
projection function, only exploits a few labeled samples (or seman-
tic ties (Montoya-Zegarra et al., 2013), when images are roughly
registered – see Section 3.3) in each domain, and reduces to solving
a simple generalized eigenvalue problem.

KEMA is introduced in Section 2. In Section 3, we test it in sev-
eral real-life scenarios, including multi-temporal and multi-source
very high resolution image classification problems, as well as in the
challenging task of making a model shadow-invariant in hyper-
spectral image classification. Section 4 concludes the paper.

2. Kernel Manifold Alignment (KEMA)

In this section, we detail the KEMA method. We first recall the
linear counterpart, the SSMA method (Wang and Mahadevan,
2011). Noting the main problems of this method, we introduce
KEMA as a solution to address them. The reader interested in more
theoretical details of KEMA can find them in Tuia and Camps-Valls
(2016). Code can be found at the URL: https://github.com/dtuia/
KEMA.

2.1. Notation

To fix notation, we consider a series of M domains. For each one
of them, we have a data set: M :¼ fxm

i 2 Rdm ji ¼ 1; . . . ;nmg, where
nm is the number of samples issued from domain m with data
dimensionality dm, and m ¼ 1; . . . ;M. Some of the pixels in xi are
labeled (l1; . . . ; lM), and most are unlabeled. From one domain to
another, the data are not necessarily paired, i.e. n1 – nm – nM , nor
it is mandatory that all domains have the same dimension, i.e.
d1 – dm – dM .

2.2. Semi-supervised manifold alignment (SSMA)

The linear SSMA method was originally proposed in Wang and
Mahadevan (2011) and successfully adapted to remote sensing
problems in Tuia et al. (2014). The SSMA method aligns data from
allM domains by projecting them into a common latent space using
a set of domain-specific projection functions, fm, collectively

grouped into the projection matrix F :¼ ½f1; . . . ; fM �>. The latent
space has two properties: it is discriminant for classification and
respects the original geometry of each manifold. To do so, SSMA
finds a data projection matrix F that minimizes the following cost
function

L ¼ lGEOþ SIM

DIS
;

where we aim to minimize a topology/geometry (GEO) and a class
similarity (SIM) terms while maximizing a class dissimilarity term
(DIS) between all samples, and l > 0 is a parameter controlling
the contribution of the similarity and the topology terms. The three
terms correspond to:

1. minimizing a geometry-preservation term, GEO, forcing the
local geometry of each manifold to remain unchanged, i.e.
penalizing projections mapping neighbors in the input space
far from each other,

GEO ¼
XM

m¼1

Xnm

i;j¼1

Wm
g ði; jÞkfm

>
xm
i � fm

>
xm
j k2

¼ trðF>XLgX
>FÞ; ð1Þ

whereWm
g is a similarity matrix returning the value 1 if two pix-

els of domainm are neighbors in the original feature space and 0
otherwise. Wm

g is typically a k-NN graph. Lg is the
ðPmnm �P

mnmÞ graph Laplacian issued from the similarity
matrices Wm

g , stacked in a block-diagonal matrix. All the out-
of-diagonal blocks ofWg are empty, since we do not want to pre-
serve neighborhood relationships between the images.
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