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a b s t r a c t

The spatial partitioning of massive point cloud data involves dividing the space into a multi-tree structure
step by step, so as to achieve the purpose of fast access and to render the point cloud. The current meth-
ods are based on spatial regularity and equal division, which is not consistent with the irregular and non-
uniform distribution of most point clouds. This paper presents a directional fuzzy c-means (D-FCM)
method for irregular spatial partitioning. The distance metric is weighted by a direction coefficient, which
is determined by the eigenvalue of the point cloud. The orientation of each node is adaptively calculated
by principal component analysis of the point cloud, and Karhunen-Loeve (KL) transform is applied to the
points coordinates in node. A binary space partitioning (BSP) tree structure is used to partition the point
cloud data node by node, and a directional BSP (D-BSP) tree is formed. The D-BSP tree structure was
tested with point clouds of 0.1 million to over 2 billion points (up to 60 GB). The experimental results
showed that the D-BSP tree can ensure that the bounding boxes are close to the actual spatial distribution
of the point cloud, it can completely expand along the spatial configuration of the point cloud without
generating unnecessary partitioning, and it can achieve a higher rendering speed with less memory
requirement.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

A point cloud is a set of data points in a coordinate system. To
access and plot a massive point cloud with a huge amount of data
is an important research topic. Point cloud is usually irregular and
non-uniform in terms of the spatial distribution. Storing point
cloud data is usually based on a sequential structure, which is inef-
ficient for accessing and rendering. Therefore, to solve this prob-
lem, many scholars have studied different spatial partitioning
techniques and data structures to better express point clouds.

Data structure and segmentation method are two kernel issues
should be addressed in spatial partitioning. Conventional data
structures include: (1) the octree, which intuitively divides the
space into eight parts; (2) the binary space partitioning (BSP) tree,
which divides the space into two parts; (3)the kdtree, which is a
particular BSP tree whose super-plane is perpendicular to the axis;
(4) the B-tree, which divides the space into multiple balanced
parts; and (5) the R-tree, which is a natural high-dimensional
extension of the B-tree. Bounding boxes of B-tree and R-tree are
often overlapping, which reduces query efficiency. Therefore,

recent studies have mainly focused on the octree and kdtree to
solve point cloud data access and rendering.

Elseberg et al. (2013) proposed an efficient octree to store and
compress one billion 3D data points without loss of precision. They
implement octree by dividing an axis aligned cube into eight parts.
Wand et al. (2008) described a new out-of-core multi-resolution
data structure for real-time visualization, interactive editing, and
efficient processing of large point clouds, using example data sets
of up to 63 GB. Their basic data structure is regular octree.
Gobbetti et al. (2008) presented an adaptive out-of-core technique
for rendering massive scalar volumes employing single-pass GPU
ray casting. Their method exploits the regular structure of octrees
to reduce costly texture memory accesses by computing bounding
boxes on-the-fly. Scheiblauer and Wimmer (2011) presented a
method for the interactive selection of arbitrary parts of a point
cloud using a so-called selection octree. They made some changes
to the original Nested Octree data structure and replace them by
regular grids. Zhu et al. (2007) and Gong et al. (2012) proposed a
new spatial organization method called the 3DORtree, which inte-
grates octree and 3D R-tree data structures. This method also
equally splits space into eight parts. Oosterom et al.(2015) devel-
oped a benchmark (23 billion to 640 billion points) to compare var-
ious point cloud data management solutions based on Morton code
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computation of single cell and the Quad-Tree structures by bitwise
interleaving x and y coordinates. Schön et al. (2013) implement a
standard equal division octree index for 3D LiDAR data atop Oracle
Spatial 11g.

Yang (2014) proposed a kind of hybrid index structure for orga-
nizing airborne LiDAR point cloud data to solve the problem of
large-volume data organization and visualization, which combines
a global quadtree with a local kdtree. The global quadtree is used to
index the upper level of the point cloud data. The kdtree is used to
index the data in a leaf of the quadtree. Experiments using 1 billion
points were conducted which reached a rate of visualization of
30 fps. De et al. (2012) implement a balanced and regular octree.
It only divides in the vertical dimension which behaves basically
like a quadtree. And then orders the points by kdtree which divides
the axis that shows the greatest extent. Mingyue and Yongjian
(2008) introduced a nested structure integrating an octree and a
binary tree to manage very large point cloud data sets.

Spatial partitioning is often implemented in a variety of soft-
ware. Commercial software such as Leica Cyclone, Realworks
Survey, RiSCAN PRO, and Polyworks use dynamic technology based
on spatial partitioning. In the Cyclone export file, PTX is the origi-
nal format of the sequential point cloud, while PTS represents the
points after spatial partitioning. RiSCAN PRO uses kdtree to accel-
erate the display speed of the point cloud. Open source XGRT uses
an octree to achieve real-time editing of point cloud data. The real-
ization method utilizing an octree and kdtree is introduced in
detail in the open source PCL.

No matter octree, kdtree or combined data structure, all the
existing methods mentioned above are of axis aligned division
and regular tree structure.

The core task of constructing an octree or kdtree is selecting the
optimal segmentation position from the candidate segmentation
plane to form the bounding boxes of sub nodes (Shan et al.,
2009). Axis-aligned Bounding Boxes (AABB), Oriented Bounding
Boxes(OBB) (Gottschalk 1996; Carvalho et al., 2003), Discrete
Oriented Polytope(k-DOPs) (Klosowski et al., 1998) and Surface
Area Heuristic (SAH) (Macdonald and Booth, 1990; Choi et al.,
2009) are the most widely used methods, where polygon or trian-
gular are the rendering primitives. But for point cloud, all the liter-
atures mentioned above only referred to axis-aligned spatial
partition. Oriented spatial partition for point primitive has not
yet studied. The single types of spatial partitioning and the mixed
types of spatial partitioning are both on the basis of spatial regular-
ity and axis aligned division. However, this is not consistent with
the irregular and non-uniform distribution of most point clouds.
A good spatial partitioning should be able to express the spatial
structure and directional distribution of the point cloud itself,
and should also be adaptive.

Aiming at the irregular and non-uniform structure of point
clouds, in this article, the direction information is introduced into
the traditional fuzzy c-means (FCM), and a directional FCM
(D-FCM) method for spatial partitioning is proposed. The direction
of each node which contains a cluster of points is adaptively calcu-
lated by principal component analysis of the point cloud, and
Karhunen-Loeve (KL) transform is applied to the points coordinates
in node. A BSP tree structure is used to partition the point cloud
node by node, and the directional BSP (D-BSP) tree is formed. As
a result, the irregularity of the point cloud is characterized by the
direction coefficient, while the non-uniform partitioning of the
point cloud is completed by FCM.

2. The directional FCM model

Adaptive spatial partitioning is essentially an automatic classi-
fication problem. In this field, FCM is more suitable for point clouds

because it is not certain which of the points in the point cloud are
divided into which child nodes. This causes the fuzziness of the
spatial partitioning. FCM can dynamically adjust the categorical
attributes of each point by setting the membership degree rather
than completely belonging to just one cluster as it is the case in
the traditional c-means (CM), Although CM clustering can also be
used to perform the spatial partitioning, the FCM resulting clusters
are best analyzed as probabilistic distributions rather than a hard
assignment of labels in CM. It should be realized that CM is a spe-
cial case of FCM when the probability function used is simply one.

The traditional FCM model (Bezdek, 1981) is generally
expressed by an objective function as follows:

J ¼
XN
i¼1

XC
j¼1

um
ij kpi � cjk2 ¼ min ð1Þ

where pi is the i-th measurement, cj is the cluster center of class j,

kpi � cjk2 is the distance metric, uij is the degree of membership of
point i belonging to class j. The weight coefficient m controls the
fuzziness of the clustering results. It is generally believed that the
algorithm has the most practical significance when m ¼ 2
(Bezdek, 1981). The clustering result can be achieved by solving
the objective function.

For a 3D point cloud, the measurement of pi is ðxi; yi; ziÞ, and
thus the corresponding objective function is:

J ¼
XN
i¼1

XC
j¼1

um
ij xi � c x

j

��� ���2 þ yi � c y
j

��� ���2 þ zi � c z
j

��� ���2� �
¼ min ð2Þ

The FCM model can solve the deficiency of dividing cube along
axis in half. However, because the distance metric is based on an
invariant coordinate system, the direction and the dividing surface
are still fixed. In order to adapt the orientation of the point cloud,
we must also consider how to introduce direction information.
Among the exiting algorithms those introducing additional infor-
mation, only GK (Gustafson and Kessel, 1978), AFCM (Wu and
Yang, 2002) and RCP (Frigui and Krishnapuram, 1996) added coef-
ficients to the distance metric. GK added a fuzzy covariance matrix,
AFCM added an ambiguous parameter, and RCP added loss func-
tion. However, none of them are closely related to the direction.

The D-FCM method proposed in this article is an extension of
FCM using directional weighting of the distance metric. It is an
effectively directional FCM of the multi dimensional vector space.
The objective function is defined as follows:

J ¼
XN
i¼1

XC
j¼1

um
ij a1 xi � c x

j

��� ���2 þ a2 yi � c y
j

��� ���2 þ a3 zi � c z
j

��� ���2� �
¼ min ð3Þ

where a1; a2; a3 are the directional weighting coefficients of the dis-
tance metric.

When a1 ¼ 1; a2 ¼ a3 ¼ 0, clustering is only implemented in the
x-direction, and the corresponding division plane is Sðx; y; zÞ ¼ x
(Fig. 1a).

When a2 ¼ 1; a1 ¼ a3 ¼ 0, clustering is only implemented in the
y-direction, and the corresponding division plane is Sðx; y; zÞ ¼ y
(Fig. 1b).

When a3 ¼ 1; a1 ¼ a2 ¼ 0, clustering is only implemented in the
z-direction, and the corresponding division plane is Sðx; y; zÞ ¼ z
(Fig. 1c).

When a1 ¼ a2 ¼ a3 ¼ 1, clustering is implemented in the entire
3D space, and the corresponding division plane is
Sðx; y; zÞ ¼ xþ yþ z (Fig. 1d).

The form of the distance metric in Eq. (3) is the final expression
of the division plane of D-FCM, and the corresponding division
plane is Sðx; y; zÞ ¼ a1xþ a2yþ a3z.
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