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a b s t r a c t

Yield loss in crops is often associated with plant disease or external factors such as environment, water
supply and nutrient availability. Improper agricultural practices can also introduce risks into the equa-
tion. Herbicide drift can be a combination of improper practices and environmental conditions which
can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time
consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alter-
ations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused
by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-
R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed
with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality,
photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA)
were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these vari-
ables were highly affected by the chemical. Four PLS-R models for predicting yield were developed
according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated
by the model performance, the analysis revealed that 7 DAE was the best time for data collection pur-
poses (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the
results of this study show that it is possible to accurately predict yield after a simulated herbicide drift
of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effec-
tive and non-destructive alternative based on the internal response of the cotton leaves.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Cotton crops are one of the most highly susceptible crops to
phenoxy herbicides, in particular to the herbicide 2,4-D. Even with
genetic modifications, it has not been possible to avoid yield loss
caused by the off-target movement of the active ingredients
(Charles et al., 2007). Although resistance to damage has been
demonstrated, it is naive to believe that cotton crops would not
be affected by this herbicide when the extent of injury depends
upon the climate and proximity to thousands of cereal and fallow
fields where 2,4-D is sprayed to control broad-leaved weeds
(Bondada, 2011). Significant inconsistencies in the traditional
assessment of damage have been proven in several studies

(Everitt and Keeling, 2009), however a more precise technique
for prediction of cotton yield loss has not been tested. This limita-
tion prevents the farmers to optimise management practices and
mitigate losses.

The phenoxy herbicide 2,4-D is a selective synthetic auxin
which causes an uncontrolled production of simulated Indole
Acetic Acid (IAA) in broadleaf plants (Bondada, 2011). IAA is con-
sidered as a master hormone because it influences every aspect
of plant growth and development (Grossmann, 2010). When
applied as herbicide, synthetic auxins mimic the deformation and
growth-inhibiting effects caused by IAA at a very constant concen-
tration until the growth causes plant death. In contrast, the phyto-
hormone Abscisic Acid (ABA) is important in the adjustment to
environmental stress, seed development and dormancy (Straub
et al., 1994). The biosynthesis of ABA is over-stimulated by herbi-
cide 2,4-D causing growth inhibitors, morphological abnormalities
and senescence (Teixeira et al., 2007).
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Remote sensing techniques are widely applied in agriculture
due to its capability to provide significant information about the
health of the crops. Biophysical and physiological variables are
analysed through the visible (VIS)-to-shortwave infrared (SWIR)
wavelengths without the need to implement destructive sampling.
With high accuracy, the ability to integrate the concept of spatial
distribution, environmental conditions and soils has turned remote
sensing techniques into a valuable tool for crop assessment
(Clevers, 1999; Tian et al., 2005). Hyperspectral sensors are able
to detect slight variabilities in the biophysical and physiological
aspect of the plants (Rapaport et al., 2015). Through the implemen-
tation of partial least squares regression analysis (PLS-R), accurate
prediction results (i.e. prediction accuracy = 92%) were obtained
when this technique was applied in predicting the grain protein
content of wheat (Triticum aestivum) (Apan et al., 2006). Hyper-
spectral sensors have been also used in a variety of applications,
such as detection of disease or stress caused by pesticides (Henry
et al., 2004), water (Detar et al., 2006), nitrogen (Schlemmer
et al., 2013), and other nutrient deficiencies (Chen et al., 2011;
Tian et al., 2012). Furthermore, effects on carotenoids, an impor-
tant pigment of green leaves, were accurately predicted by differ-
ent statistical approaches applied to hyperspectral data in cotton
crops (Yi et al., 2014). These techniques included stepwise multiple
linear regression (SMLR), band selection indices, published vegeta-
tion indices and partial least squares regression (PLS-R).

Remote sensing data has been also used to discriminate species
(Ghosh et al., 2014), canopy variables and structures (Lefsky et al.,
2002; Marshall and Thenkabail, 2015; Rama Rao, 2008). With the
objective of examining the healthiness of vegetation, this technol-
ogy has been further applied to estimate different biophysical and
physiological variables and pigment contents of vegetation over a
large number of crops (Barnes et al., 2000; Li et al., 2001; Pinter
et al., 2003). Other remote sensing studies have analysed the rela-
tionship between cotton reflectance and lint yield (Li et al., 2001).
Yield was found to be highly correlated with conductance and
transpiration rate as they are positively correlated with flower pro-
duction (Detar et al., 2006). Studies on the effects of 2,4-D on cot-
ton crops demonstrated that photosynthesis was highly affected by
this herbicide leading to ineffective photosynthesis process affect-
ing cotton boll production and development (Perumal et al., 2006;
Sullivan et al., 2007). Spectral bands in the green, red and NIR
regions have been identified as good predictors of yield and they
are also associated with the health condition of the plants (Plant
et al., 2000; Zhao et al., 2005). Photosynthesis has a strong relation-
ship with the spectral bands around 700 nm which is also related
to physiological stress (Merton et al., 2004; Zhao et al., 2007b).
As the visible and NIR bands respond to different conditions of
the crop, it may be possible to determine yield based on those
responses (Pinter et al., 2003; Thulin et al., 2012; Zarco-Tejada
et al., 2005). In other studies at different scales, reflectance datasets
were successfully used to monitor crop growth and yield. Low alti-
tude digital imagery provided accurate information for classifying
and quantifying different variables of crop growth and develop-
ment at high spatial resolution (Oberthür et al., 2007). On the other
hand, at a national and international scale, daily reflectance pro-
vided by AVHRR and MODIS data (coarse spatial resolution) were
analysed to monitor global cereal yield during the last three dec-
ades (Zhang and Zhang, 2016).

In order to minimise the influence of soil (Yu et al., 2015), pig-
ments, moisture, and the general variability of external factors on
leaf and canopy reflectance (Cyr et al., 1995; Zhao et al., 2007a),
several narrow and broadband vegetation indices have been devel-
oped. However, their applicability may be limited by the pigments’
variability per unit leaf area and the potential saturation at low leaf
area index (LAI) which is related to spatial and temporal situations
(Blackburn, 2007; Carter, 1998; Zarco-Tejada et al., 2005). On the

other hand, hyperspectral sensors may allow the detection of very
small changes within the plant due to reflectance changes on the
electromagnetic spectrum which often consist of hundreds of
highly correlated wavelengths. These sensors rely on the efficiency
of the processing and analysis techniques to isolate one single
response variable with a sample size greatly smaller than the num-
ber of predictors (Rapaport et al., 2015; Wold et al., 2001).

Using an algorithm that deals with hundreds of highly corre-
lated variables, partial least squares regression (PLS-R) analysis is
commonly used and considered a powerful tool in spectroscopy
(Indahl and Næs, 2004). Furthermore, PLS-R optimises the result-
ing model by reducing the dimensionality of the electromagnetic
spectrum (Mevik and Wehrens, 2007; Wold et al., 2001). While
various statistical methods are available for quantitative studies,
such as neural networks (de Castro et al., 2012; Goel et al.,
2003), PLS-R has proven to be optimal as a first-step approach
for supervised classifications (Indahl et al., 2009) and it is also
one of the most effective methods for quantitative predictions
(Mevik and Wehrens, 2007). To date, despite successful yield pre-
dictions studies and discrimination of healthy from unhealthy
plants damaged by herbicide drifts, a research gap still exists to
accurately model of yield loss caused by 2,4-D herbicide drift in
cotton crops using hyperspectral data.

The primary aim of this study was to estimate damages caused
by 2,4-D herbicide drift on cotton crops through the analysis of the
following: (i) influence of dose in the amount and quality of yield,
photosynthesis, conductivity and two hormones - IAA and ABA; (ii)
prediction of yield at four different time periods after the exposure
to herbicide; and (iii) identification of the influence of the time
periods after the exposure in the performance of yield prediction
models.

2. Materials and methods

2.1. Experimental design and treatments

Four replications composed of nine treatments were established
in a commercial cotton field (151�32040.000E, 27�25047.500S) near
Jondaryan with dose and timing of exposure as factors. Jondaryan
is a rural town in the Darling Downs region, about 140 km west of
Brisbane and midway of Toowoomba and Dalby (Queensland, Aus-
tralia). The general location the study area, treatments, buffer
zones and replications are shown in Fig. 1.

In this study, three doses were investigated: Nil, 5% and 50% of
the recommended label rate of 2,4-D (Amicide Advance 700�; 700 g/
L 2,4-D) at three different timings of exposure: 4–5 nodes (S1), 7–8
nodes (S2) and 11–12 nodes (S3) (see Table 1). Each treatment plot
was composed of 5 rows with one meter row spacing and 5 m long
(Fig. 2). A buffer zone of 5 m � 5 m was established to reduce any
risk of drift from the treatments. The herbicide was applied when
plants reached the stage of growth defined as factors under opti-
mal environmental conditions between 9 and 10 am local time.
Plants were treated only once and directly sprayed in two rows
of the 5 rows available. A CO2 Research Sprayer provided by The
Queensland Department of Agriculture and Fisheries (DAF) at Too-
woomba was used, with walking speed of 1 m/s for all treatments
(Fig. 2). The pressure was 2 bar, the nozzle size TTI110015, and the
water volume was set to constant rate at 143 L/ha. Within each
treatment, five randomly selected plants were sampled to collect
data. When destructive sampling was necessary (i.e., for IAA and
ABA analysis) the plants were marked to be excluded for future
analysis. Standard management practices were applied to all treat-
ments before and after the spray activity. In two replications, some
treatments required to be moved as some rows looked slightly
affected by drift from an herbicide spray in a neighbouring field.

66 L.A. Suarez et al. / ISPRS Journal of Photogrammetry and Remote Sensing 120 (2016) 65–76



Download	English	Version:

https://daneshyari.com/en/article/4972988

Download	Persian	Version:

https://daneshyari.com/article/4972988

Daneshyari.com

https://daneshyari.com/en/article/4972988
https://daneshyari.com/article/4972988
https://daneshyari.com/

