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a b s t r a c t

Empirical mode decomposition (EMD) and its variants have recently been applied for hyperspectral
image (HSI) classification due to their ability to extract useful features from the original HSI. However,
it remains a challenging task to effectively exploit the spectral-spatial information by the traditional vec-
tor or image-based methods. In this paper, a three-dimensional (3D) extension of EMD (3D-EMD) is pro-
posed to naturally treat the HSI as a cube and decompose the HSI into varying oscillations (i.e. 3D intrinsic
mode functions (3D-IMFs)). To achieve fast 3D-EMD implementation, 3D Delaunay triangulation (3D-DT)
is utilized to determine the distances of extrema, while separable filters are adopted to generate the
envelopes. Taking the extracted 3D-IMFs as features of different tasks, robust multitask learning
(RMTL) is further proposed for HSI classification. In RMTL, pairs of low-rank and sparse structures are for-
mulated by trace-norm and l1;2-norm to capture task relatedness and specificity, respectively. Moreover,
the optimization problems of RMTL can be efficiently solved by the inexact augmented Lagrangian
method (IALM). Compared with several state-of-the-art feature extraction and classification methods,
the experimental results conducted on three benchmark data sets demonstrate the superiority of the pro-
posed methods.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Hyperspectral imaging sensors acquire the radiance of materi-
als in hundreds of contiguous bands from the visible to the infrared
spectrum, providing high spectral resolution for each pixel to dis-
tinguish various materials. Due to the rich information captured
by sensors, hyperspectral image (HSI) has opened up new opportu-
nities and challenges in many remote sensing applications, such as
classification (Jia et al., 2015; Tan et al., 2015), unmixing (Bioucas-
Dias et al., 2012), data fusion (Wang and Glennie, 2015), target
detection (Dong et al., 2015), and so on. Supervised classification,
which aims at labeling each pixel by one of the land-cover classes
based on training samples given for different classes, is an impor-
tant application that has attracted extensive research efforts over
the past few years. The framework of HSI classification contains
two main aspects: feature acquisition and classifier construction.

To acquire discriminative features for HSI classification, many
feature selection/extraction methods have been developed in the

last decades. Feature selection aims to select a subset of the origi-
nal features which make the classes to be distinguished accurately.
Some representative feature selection methods involve the subop-
timal search strategy (Serpico and Bruzzone, 2001), clustering
(Martínez-Usó et al., 2007; Yuan et al., 2016), genetic algorithm
(Ghamisi and Benediktsson, 2015), partial least squares regression
(Li et al., 2015; Neumann et al., 2016) and game theory (Gurram
et al., 2016). One of the focus of this paper is feature extraction,
which transforms the original HSI into new features and preserves
the vast majority information. Widespread feature extraction
methods include the principle component analysis (PCA) (Zabalza
et al., 2014), gray level co-occurrence matrix (GLCM) (Huang
et al., 2014), wavelet transform (WT) (Bruce et al., 2002; Hsu,
2007), one-dimensional singular spectrum analysis (1D-SSA)
(Zabalza et al., 2014), one-dimensional empirical mode decomposi-
tion (1D-EMD) (He et al., 2014) and manifold learning-based meth-
ods (Huang et al., 2015; Ma et al., 2016). Besides spectral
information, the spatial relationship of neighboring pixels is also
crucial to yield promising results. In this regard, spatial informa-
tion is extracted by extended morphological profiles (EMPs)
(Fauvel et al., 2013; Gu et al., 2016), extended multiattribute
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profiles (EMAPs) (Song et al., 2014), image segmentation (He et al.,
2016; Li et al., 2015), two-dimensional EMD (2D-EMD) (Demir and
Ertürk, 2010; Gormus et al., 2012; Ertürk et al., 2013; He et al.,
2013) and two-dimensional SSA (2D-SSA) (Zabalza et al., 2015).
The aforementioned feature extraction methods only deal with
the HSI by vector or image-based strategies. However, a HSI data
set is naturally modeled as three-dimensional (3D) cube which
contains a spectral dimension and two spatial dimensions. As such,
much work has been carried out in the literature to treat the HSI as
volumetric data and detect the spectral-spatial features simultane-
ously. For instance, 3D discrete WT (3D-DWT) is adopted by Qian
et al. (2013) to capture geometrical and statistical spectral-
spatial structures of the HSI cube. The traditional GLCM is
extended into 3D scenario (Tsai and Lai, 2013) to extract discrim-
inant texture features. Moreover, some researchers (Zhang et al.,
2013; Guo et al., 2013; Zhong et al., 2015; Veganzones et al.,
2016) extract spectral-spatial features by considering the HSI as
a whole tensor rather than a vector or matrix.

Designing suitable classifiers also plays a vital role to yield sig-
nificant classification performance. Two types of state-of-the-art
classifiers are support vector machine (SVM) (Vapnik, 1995;
Cavallaro et al., 2015; Dalponte et al., 2015) and sparse
representation-based classification (SRC) (Chen et al., 2011, 2013;
Wu et al., 2015). The former is based on structural risk minimiza-
tion, while the latter is motivated by the rapid development of
compressed sensing. Other powerful methods, such as ensemble
learning (Samat et al., 2014), active learning (Crawford et al.,
2013) and deep learning (Zhao and Du, 2016) also announce
impressive results for HSI classification. Recently, many tech-
niques, which include some variations of SVM or SRC-based meth-
ods, have been proposed to incorporate both spectral and spatial
characteristics of the samples. For instance, composite kernels
(Camps-Valls et al., 2006) and multiple kernel learning (He and
Li, 2015; Wang et al., 2016) are proposed to balance the spectral
and spatial content by optimizing the linear combination of vari-
ous kernels. Markov random filed (MRF) regularization is adopted
by Tarabalka et al. (2010) to take advantage of the spatial contex-
tual information to refine the classification results. Support tensor
machines (STM) (Guo et al., 2016) is developed to tackle the clas-
sification problem of HSI with tensor-based data structure. Joint
sparsity model (JSM) is applied in (Chen et al., 2011; Fu et al.,
2016) to incorporate the spatial correlation between neighboring
pixels into a joint SRC. Multitask learning (MTL) (He et al., 2014;
Li et al., 2015; Yuan et al., 2015; Jia et al., 2016) is proposed to deal
with multiple features of the HSI simultaneously by treating each
type of feature as a task. Moreover, low-rank representation
(LRR) (He et al., 2016; Xu et al., 2015; de Morsier et al., 2016)
has also gained much popularity since the high spatial similarity
of HSI implies the low-rank characteristic and LRR provides a
robust tool for capturing the correlation of data belonging to sev-
eral subspaces. Versatile as the MTL and LRR are, to the best of
our knowledge, existing MTL rarely exploits the low-rank structure
of HSI to improve the classification performance.

In this paper, we extend the traditional 1D/2D-EMD into 3D (i.e.
3D-EMD) by naturally treating the HSI as a cube. The HSI can be
decomposed into varying oscillations named 3D intrinsic mode
functions (3D-IMFs), each of which is a 3D feature of the original
HSI. In general, the computational efforts and memory require-
ments will exponentially increase with the addition of dimension.
Therefore, two strategies are adopted to accelerate the 3D-EMD:
(1) 3D Delaunay triangulation (3D-DT) (Golias and Dutton, 1997)
is used to determine the distances of extrema. Rather than all of
the extrema, only part of the extrema are involved in calculating
the filter size. (2) Separable filters are adopted to generate the
envelopes. That means, instead of performing a complicated 3D fil-
ter, we separately execute a 1D filter three times to achieve the

same results as 3D filter, thus reducing the computational require-
ments. Subsequently, robust MTL (RMTL) is proposed to classify all
of the 3D-IMFs simultaneously by taking each IMF as a task. The
RMTL captures the task relationships by low-rank structure, while
the specificities can also be identified in the RMTL by sparse struc-
ture. The pairs of low-rank and sparse structures are realized by
trace-norm and l12-norm, respectively. Inexact augmented Lagran-
gian method (IALM) (Lin et al., 2009) is adopted to effectively solve
the optimization problem in the RMTL. Based upon the above anal-
ysis, the framework of the proposed HSI classification method is
outlined in Fig. 1.

To sum up, the main innovative contributions of this work lie in
the following two aspects:

(1) We present the first attempt to develop a fast 3D-EMD,
which treats the HSI as a data cube and decomposes the
HSI into several 3D-IMFs. Instead of extending the 1D/2D-
EMD directly into 3D, two strategies (i.e. 3D-DT and separa-
ble filters) are adopted to facilitate implementation of the
proposed 3D-EMD in filter size determination and envelope
generation. Moreover, the 3D nature of 3D-IMFs help to bet-
ter represent the spectral-spatial features of the samples in
HSI. As such, compared to the vector or image-based meth-
ods, the proposed 3D-EMD method facilitates the preserva-
tion of spectral-spatial information.

(2) We take each 3D-IMF as a task and simultaneously classify
the 3D-IMFs by the RMTL, which integrates multiple fea-
tures with both low-rank and sparse regularizations. It is
of great importance to combine multiple features due to
their potential advantages in characterizing the HSI over a
single feature. Note that the high spatial similarity of the
HSI implies the low-rank property and the sparse matrix
identifies task specificities, the proposed low-rank and
sparse basedRMTL can capture both shared factors and
specificities of the tasks.

The layout of this paper is as follows. Section 2 describes the
proposed 3D-EMD method. Section 3 presents the RMTL for HSI
classification. Experimental results on three benchmark HSI data
sets are illustrated in Section 4. Finally, conclusions are drawn in
Section 5.

2. 3D extension of EMD for analyzing HSI

EMD, which is first proposed by Huang et al. (1998) has
attracted a great deal of attention in various applications (Li
et al., 2013; Song et al., 2014) due to its ability to extract local char-
acteristics of the non-linear and/or non-stationary data. Contrary
to most of the signal processing methods (e.g. Fourier transform
and WT), the EMD can adaptively decompose the non-linear and/
or non-stationary data as sum of zero-mean amplitude modulation
and frequency modulation (AM-FM) components termed as IMFs.
As stated in Rilling et al. (2003), Deléchelle et al. (2005), Patel
et al. (2016), and Ren et al. (2016), the sifting process of EMD is
realized by detecting the local maxima and minima, generating
the upper and lower envelops of the extrema, subtracting the mean
envelopes to isolate the high-frequency oscillatory components
and repeating the above-mentioned procedures recursively on
the rest of data. Both 1D-EMD and 2D-EMD have been receiving
considerable attention in the signal/image processing literature.
As mentioned earlier, the 1D-EMD/2D-EMD methods have been
successfully applied in hyperspectral classification (He et al.,
2014; Demir and Ertürk, 2010; Gormus et al., 2012; Ertürk et al.,
2013; He et al., 2013). Note that a HSI data is naturally formed as
3D cube, it would be promising to develop the 3D extension of
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