
Web Semantics: Science, Services and Agents on the World Wide Web 42 (2017) 1–18

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Decomposing federated queries in presence of replicated fragments
Gabriela Montoya a,∗, Hala Skaf-Molli a, Pascal Molli a, Maria-Esther Vidal b
a LINA – UFR de Sciences et Techniques, Nantes University, 2, rue de la Houssinière. 44322 NANTES CEDEX 3, France
b Universidad Simón Bolívar, Baruta, Edo. Miranda - Apartado 89000 Cable Unibolivar Caracas, Venezuela

a r t i c l e i n f o

Article history:
Received 1 March 2016
Received in revised form
30 October 2016
Accepted 17 December 2016
Available online 21 December 2016

Keywords:
Linked data
Federated query processing
Query decomposition
Fragment replication

a b s t r a c t

Federated query engines allow for linked data consumption using SPARQL endpoints. Replicating
data fragments from different sources enables data re-organization and provides the basis for more
effective and efficient federated query processing. However, existing federated query engines are not
designed to support replication. In this paper, we propose a replication-aware framework named LILAC,
sparqL query decomposItion against federations of repLicAted data sourCes, that relies on replicated
fragment descriptions to accurately identify sources that provide replicated data. We defined the query
decomposition problem with fragment replication (QDP-FR). QDP-FR corresponds to the problem of
finding the sub-queries to be sent to the endpoints that allows the federated query engine to compute
the query answer, while the number of tuples to be transferred from endpoints to the federated query
engine is minimized. An approximation of QDP-FR is implemented by the LILAC replication-aware query
decomposition algorithm. Further, LILAC techniques have been included in the state-of-the-art federated
query engines FedX and ANAPSID to evaluate the benefits of the proposed source selection and query
decomposition techniques in different engines. Experimental results suggest that LILAC efficiently solves
QDP-FR and is able to reduce the number of transferred tuples and the execution time of the studied
engines.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Billions of RDF triples have been made accessible through
SPARQL endpoints by data providers.1 Recent studies reveal unre-
liability and unavailability of existing public SPARQL endpoints [1].
According to the SPARQLESmonitoring system [2] less than a third
out of the 545 studied public endpoints exhibits an availability rate
of 99%–100% (values for November 2015).

Traditionally in distributed databases, fragmentation and repli-
cation techniques have been used to improve data availability [3].
Distributed database administrators are able to design the frag-
mentation and replication schema according to the applications
and the expected workload. The Linking Open Data (LOD) cloud [4]
datasets are published by autonomous data providers. Hence frag-
mentation and replication schema cannot be designed. Clearly, any
data provider can partially or totally replicate datasets from other

∗ Corresponding author.
E-mail addresses: gabriela.montoya@univ-nantes.fr (G. Montoya),

hala.skaf@univ-nantes.fr (H. Skaf-Molli), pascal.molli@univ-nantes.fr (P. Molli),
mvidal@ldc.usb.ve (M.-E. Vidal).
1 http://stats.lod2.eu.

data providers. The LOD Cloud Cache SPARQL endpoint2 is an ex-
ample of an endpoint that provides access to total replicas of sev-
eral datasets. DBpedia live3 allows a third party to replicate DB-
pedia live changes in almost real-time. Data consumers may also
replicate RDF datasets for efficient and reliable execution of their
applications. However, given the size of the LOD cloud datasets,
data consumersmay just replicate subsets of RDF datasets or repli-
cated fragments in a way that their applications can be efficiently
executed. Partial replication allows for speeding up query execu-
tion time. Partial replication can be facilitated by data providers,
e.g., DBpedia 2016-044 consists of over seventy dump files each of
them providing different fragments of the same dataset, or can be
facilitated by third party systems. Publish–Subscribe systems such
as sparqlPuSH [5] or iRap RDF Update Propagation Framework [6]
allow to partially replicate datasets. Additionally, data consumers
are also autonomous and can declare federations composed of any
set of SPARQL endpoints to execute their federated queries.

2 http://lod2.openlinksw.com/sparql.
3 http://live.dbpedia.org/.
4 http://downloads.dbpedia.org/2016-04/core-i18n/en/.

http://dx.doi.org/10.1016/j.websem.2016.12.001
1570-8268/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.websem.2016.12.001
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2016.12.001&domain=pdf
mailto:gabriela.montoya@univ-nantes.fr
mailto:hala.skaf@univ-nantes.fr
mailto:pascal.molli@univ-nantes.fr
mailto:mvidal@ldc.usb.ve
http://stats.lod2.eu
http://lod2.openlinksw.com/sparql
http://live.dbpedia.org/
http://downloads.dbpedia.org/2016-04/core-i18n/en/
http://dx.doi.org/10.1016/j.websem.2016.12.001


2 G. Montoya et al. / Web Semantics: Science, Services and Agents on the World Wide Web 42 (2017) 1–18

Consequently, partial or total replication can exist in federa-
tions of SPARQL endpoints; replicateddata canbe at different levels
of consistency [7]; and a federated query engine has to be aware of
the replication at runtime in order to efficiently produce correct
answers. On one hand, if a federated query engine is unaware of
data replication, the engine performance may be negatively im-
pacted whenever replicated data is collected from the available
sources [8,9]. On the other hand, if a federated query engine is
aware of data replication, sources can be efficiently selected [10,
9] and data localities created by replication can be exploited [8] to
significantly speed up federated query processing. These data lo-
calities, created by endpoints with replicated fragments from dif-
ferent datasets but relevant for federated queries, are not attain-
able by data providers.

Exploiting replicas can be beneficial. However, replicating
data has the intrinsic problem of ensuring data consistency.
Traditionally in distributed databases, replicas can be strongly
consistent thanks to distributed transactions [3]. However, in the
case of the Web, there is no mechanism to ensure that all the
available data are strongly consistent. Regarding consistency of
replicas, we have identified three main scenarios.

• First, if specific dataset versions are replicated, then the replicas
are always perfectly synchronized, e.g., a replica of DBpedia 3.8
is always perfectly synchronized with DBpedia 3.8. This case
is especially pertinent when a federated query is defined on a
particular version of the available datasets in order to ensure
reproducible results.
• Second, if the replicated data is locally modified, the local data

is no longer a replica. For instance, if processes of data quality
assessment are performed by a data consumer on a replica of
DBpedia 3.8, changes to the replica need to be evaluated based
on the trustiness of the data consumer. Clearly, data consumers
have to change their federation according with what source
they trust.
• Third, if the most up-to-date dataset versions are used, because

strong consistency cannot be ensured in the context of LOD
cloud datasets, replicas may be unsynchronized during query
execution. Therefore, it is possible that some of the replicas
used to evaluate the query have not integrated all the latest
changes before queries are executed. This third scenario can
be handled by measuring the replica divergence and the
divergence incurred by the sources used to evaluate the query.
Out of date replicas can be pruned during the source selection
as proposed in [11].

In this paper, for the sake of simplicity, we work under the
assumption that replicas are perfectly synchronized as in the first
scenario and focus on query processing optimization under this
assumption.

Query processing against sources with replicated data has been
addressed in [8], while the related problem of query processing
against sources with duplicated data has been tackled in [10,9].
These three approaches prune redundant sources at source selec-
tion time. This selection may prevent the decomposer from as-
signing joins between a group of triple patterns to the same end-
point(s), even if this choice produces themost selective sub-query.
To illustrate, consider a BGPwith three triple patterns tp1, tp2, and
tp3. Suppose a SPARQL endpoint C1 is relevant for tp1 and tp3,
while C2 is relevant for tp1 and tp2. The source selection strategies
implemented by these approaches, will prevent from assigning
tp1.tp3 to C1 and tp1.tp2 to C2, even if these sub-queries generate
less intermediate results. Consequently, as we show in Section 2,
managing replication only at source selection time may impede a
query decomposer to generate the most selective sub-queries.

In this paper, we exploit the replication knowledge during
query decomposition, to generate query decompositions where

the limitations of existing replication-aware source selection
approaches are overcome. Furthermore, we formalize the query
decomposition problemwith fragment replication (QDP-FR). QDP-
FR corresponds to the problem of finding the sub-queries to be
sent to the endpoints that allow the federated query engine to
compute the query answer, while the number of tuples to be
transferred from the endpoints is minimized. We also propose
an approximate solution to QDP-FR, called LILAC, sparqL query
decomposItion against federations of repLicAted data sourCes, that
decomposes SPARQL queries and ensures complete and sound
query answers, while reducing the number of transferred tuples
from the endpoints.

Specifically, the contributions of this paper are:

• We outline the limitations of solving the source selection
problem independently of the query decomposition problem
in the context of replicated and fragmented data. We propose
an approach where these two federated query processing tasks
should be interleaved to support engines in finding better
execution plans.
• Based on the replication-aware framework introduced in [8],

we propose a query decomposition strategy that relies on
this framework to exploit fragments replicated by various
endpoints.
• We formalize the query decomposition problemwith fragment

replication (QDP-FR).
• We propose a sound and complete algorithm to solve the QDP-

FR problem.
• We reduce theQDP-FR problem to the set covering problemand

use existing set covering heuristics to produce good solutions to
the QDP-FR problem.
• We extend federated query engines FedX and ANAPSID to

perform LILAC query decomposition, i.e., we extend the engines
and create the new engines LILAC+FedX and LILAC+ANAPSID.
We study the performance of these engines and compare
them with existing engines FedX, DAW + FedX, Fedra +
FedX, ANAPSID, DAW + ANAPSID, and Fedra + ANAPSID.
Results suggest that query decompositions produced by LILAC
contribute to reduce the number of transferred tuples and the
query execution time.

The paper is organized as follows. Section 2 provides back-
ground andmotivation. Section 3 defines replicated fragments and
presents the query decomposition problem for fragment replica-
tion. Section 4 presents the LILAC source selection and query de-
composition algorithm. Section 5 reports our experimental results.
Section 6 summarizes related works. Finally, conclusions and fu-
ture work are outlined in Section 7.

2. Background and motivation

In this section, we illustrate the impact that exploiting meta-
data about replicated fragments has on federated query process-
ing. First,we assume that data consumers replicate fragments com-
posed of RDF triples that satisfy a given triple pattern; URIs in the
original RDF dataset are kept for all the replicated resources. In Fig.
1(a), a fragment of DBpedia is illustrated. This fragment comprises
RDF triples that satisfy the triple pattern ?film dbo:director
?director; triples included in Fig. 1(a) correspond to a copy
of the DBpedia RDF triples where URIs are preserved. Fragments
are described using a 2-tuple fd that indicates the authoritative
source of the fragment, e.g., DBpedia; the triple pattern that is met
by the triples in the fragment is also included in fd, e.g., ?film
dbo:director ?director.

Fig. 1(b) depicts a federation of three SPARQL endpoints: C1,
C2, and C3; these endpoints expose seven replicated fragments
from DBpedia and LinkedMDB. Replicated fragments correspond



Download English Version:

https://daneshyari.com/en/article/4973353

Download Persian Version:

https://daneshyari.com/article/4973353

Daneshyari.com

https://daneshyari.com/en/article/4973353
https://daneshyari.com/article/4973353
https://daneshyari.com

