Web Semantics: Science, Services and Agents on the World Wide Web 42 (2017) 38-54

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents

SERVICES &

on the World Wide Web ol

WORLD WIDE WEB

journal homepage: www.elsevier.com/locate/websem

Operator-aware approach for boosting performance in RDF stream
processing

Danh Le-Phuoc

Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 16 July 2015
Received in revised form

7 March 2016

Accepted 1 April 2016
Available online 11 April 2016

To enable efficiency in stream processing, the evaluation of a query is usually performed over bounded
parts of (potentially) unbounded streams, i.e., processing windows “slide” over the streams. To avoid
inefficient re-evaluations of already evaluated parts of a stream in respect to a query, incremental
evaluation strategies are applied, i.e., the query results are obtained incrementally from the result set
of the preceding processing state without having to re-evaluate all input buffers. This method is highly
efficient but it comes at the cost of having to maintain processing state, which is not trivial, and may
defeat performance advantages of the incremental evaluation strategy. In the context of RDF streams
the problem is further aggravated by the hard-to-predict evolution of the structure of RDF graphs over
time and the application of sub-optimal implementation approaches, e.g., using relational technologies
for storing data and processing states which incur significant performance drawbacks for graph-based
query patterns. To address these performance problems, this paper proposes a set of novel operator-aware
data structures coupled with incremental evaluation algorithms which outperform the counterparts of
relational stream processing systems. This claim is demonstrated through extensive experimental results

Keywords:
Continuous queries
Linked stream data
Linked data
Semantic web
Stream processing

on both simulated and real datasets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There are billions of heterogeneous stream data sources that
are continuously producing an enormous amount of information
under diverse ownerships and controls. To overcome this issue, the
RDF data model becomes a natural choice to provide an integrated
view for querying the data without requiring an adherence
to a specified schema. Hence, several RDF Stream Processing
(RSP) engines [1] have been proving their advantages in tackling
interoperability in several projects and products in Internet of
Things and Smart Cities, etc. However, due to the intrinsic nature
of stream data processing in such targeted applications, the ability
to process stream data at high throughput and low latency is a
vital requirement that has not been thoroughly addressed in such
engines.

A common strategy in implementing an RSP so far is delegat-
ing performance issues to underlying libraries or systems, e.g., RD-
F/SPARQL query processors, data stream management systems
(DSMSs) or complex event processing engines (CEPs). This strat-
egy greatly benefits from the available techniques, approaches and

E-mail address: danh@danhlephuoc.info.

http://dx.doi.org/10.1016/j.websem.2016.04.001
1570-8268/© 2016 Elsevier B.V. All rights reserved.

tools provided by such research communities. However we be-
lieve that it requires a lot of effort in investigation, tuning and re-
engineering to build a performant RSP engine. In particular, the
RDF store or SPARQL query processor is designed for heavily read-
intensive contexts [2-4] whilst an RSP engine needs to deal with
high writing throughput of unbounded incoming data and contin-
uous computation corresponding to such updates. To answer this
need, several RSP engines employ the work on evaluating sliding-
window operators of DSMS or CEP. For instance, C-SPARQL [5] uses
ESPER' together with Jena? and CQELS [6] implements operators of
Aurora [7] using the underlying TDB libraries of Jena.

In such generic stream-processing engines, there are two eval-
uation strategies of executing sliding-window operators, i.e., re-
evaluation and incremental evaluation [8]. In the re-evaluation
strategy, the query is re-evaluated independent of the previous
computation efforts. To avoid inefficient re-evaluations of already-
evaluated parts of a stream in respect to a query, incremental-
evaluation strategies are applied, i.e., the query results are obtained
incrementally from the result set of the preceding processing state

1 http://www.espertech.com/esper/index.php.

2 https://jena.apache.org/.

http://dx.doi.org/10.1016/j.websem.2016.04.001
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2016.04.001&domain=pdf
mailto:danh@danhlephuoc.info
http://www.espertech.com/esper/index.php
https://jena.apache.org/
http://dx.doi.org/10.1016/j.websem.2016.04.001

D. Le-Phuoc / Web Semantics: Science, Services and Agents on the World Wide Web 42 (2017) 38-54 39

without having to re-evaluate all input buffers. This method has
been proven highly efficient to some extent [9-13] but comes at
the cost of having to maintain processing state, which is not triv-
ial, and may defeat performance and scalability advantages of the
incremental evaluation strategy [11,8]. As shown in [8], several
efforts in providing incremental evaluation algorithms for slid-
ing windows have been conducted over the years but there are
still challenging issues and a lot of room for improvement. In the
context of RDF streams, the problem is further aggravated by the
hard-to-predict evolution of the structure of RDF graphs over time
and the application of sub-optimal implementation approaches,
e.g., using relational technologies for storing data and processing
states which incur significant performance drawbacks for graph-
based query patterns.

To address the above shortcomings and challenging issues, this
paper introduces a set of novel operator-aware data structures
associated with efficient incremental evaluation algorithms to deal
with the specific properties of RDF stream data and common query
patterns. These new data structures are designed to handle small
data items and intermediate processing states very efficiently. The
data structures include various low-maintenance-cost indexes to
support high throughput in the probing operations that are used in
various operator implementations. Based on such data structures,
we propose several algorithms to enable incremental evaluation of
basic operators such as join, aggregation, duplicate elimination and
negation. These algorithms also overcome the typical problems of
incremental evaluation of windowing operators. Our experimental
results show that our approach performs better than relational
approaches and re-evaluation approaches by orders of magnitude
in reducing query execution delay.

The remainder of this article is structured as follows. In
Section 2 we introduce some background concepts and techniques
and present some analyses of current approaches to set the context
of the contributions of the paper. Then, we describe our operator-
aware data structures in Section 3, including storage design, access
methods, usage, implementation variation, optimisation, and
performance tuning. After that we present incremental evaluation
algorithms based on these data structures in Section 4. To evaluate
the performance of the operators built on such data structures and
algorithms, we present and discuss the experimental results using
our new data structures and algorithms in Section 5. Besides, the
related work is also discussed in Section 6. Finally, we finish the
paper with our conclusions.

2. Background and analysis

Before going into technical details of the article, this section
introduces some background to review the technical shortcomings
that motivate the design of our data structures and algorithms.

2.1. Continuous query operators on RDF stream

An RDF stream is modelled by utilising the definitions of RDF
nodes and RDF triples whereby the stream elements of an RDF
stream are represented as RDF triples with temporal contexts. As
the standardisation of RDF Streams is still the on-going work of the
W3C RSP community,” this paper will leave the formal definitions
of an RDF stream generic enough for latter adoption. Instead, we
focus on evaluation aspects of basic continuous query operators,
e.g., join, aggregation and duplication elimination. Hence, we
introduce an example of real RDF streams to investigate the issues
of evaluating continuous queries inspired by the open dataset of

3 https:/[www.w3.org/community/rsp/.

taxi rides in New York.* Note that instead of following strictly to its
stream format, we assume that there are three RDF streams, &pickup,
Baropofr and gare With the schema shown below. Two streams 8pickup
and $gropofr Teport the events of a taxi being picked up or dropped
off respectively. The stream 4, reports the payment for a taxi
ride that was reported in the stream &y at a picking-up time
given by the triple with the predicate : pickupTime. Note that in the
example, an event is represented as an RDF graph, however, clearly
other representations still can be processed by the operators to be
discussed in this paper.

P :ridey :taxi : 89...CF4
pickup = 1 :ride; : pickupTime "2013 — 01 — 0115 : 11 : 48".

3 | :ridey :dropoffTime "2013 — 01 — 0115 : 18 : 10",
dropoff = 1 - ridey : triptime 382. .

g -)itrans fare 7.
fare =1 : trans, : pickupTime "2013 — 01 — 0115 : 11 : 48".[°

The temporal context of each event recorded in each stream is
specified by a triple with a temporal predicate, i.e., : pickupTime or
:dropoffTime. Note that, the temporal context can be encoded dif-
ferently in a certain implementation. For instance, the implemen-
tations of C-SPARQL [5] and CQELS [6] use the system timestamp
at the time when an event (i.e. a triple) arrives to the system. This
timestamp is encoded as the temporal context to determine the or-
der of stream elements to be processed in the engine. In the scope
of this paper, we assume the stream elements are totally ordered.
This assumption might lead to a limitation that there cannot be
two taxi rides with the same pickup time to guarantee a fare to be
unambiguously connected with a ride. In practice, this limitation
can be overcome by using suitable time-unit of the timestamps.
Most of such systems define the sliding-window operators which
are used to extract a finite set of RDF triples as an RDF graph from
an RDF stream based on a certain window. The idea of extracting
an RDF graph from an unbounded RDF stream is to be able to ap-
ply SPARQL query operators, e.g., SPARQL 1.1, so that a continuous
query language on RDF stream can inherit the SPARQL grammars.
Along this line, the definitions of such window operators on RDF
streams are adopted from window operators on relational streams
of CQL [14]. Consequently, the semantics of a continuous query
on RDF streams are defined as a composition of such query op-
erators. For example, with the above data, a query based on cur-
rently agreed syntaxes of RSP community is illustrated as below.
This query is used to continuously report “hourly riding rate of ac-
tive taxies of last 1000 payment transactions” whereby active taxis
are the taxis that reported picking-ups within 2 h and dropping-
offs within last 1 h.

SELECT ?taxi (AVERAGE (?fare/ (?tripTime/3600)) AS ?hourlyRate)
FROM NAMED WINDOW :Wl ON nyctaxi:fare [COUNT 1000]
FROM NAMED WINDOW :W2 ON nyctaxi:pickup
[RANGE PT2H @:pickupTime]
FROM NAMED WINDOW :W3 ON nyctaxi:dropoff
[RANGE PTI1H Q@:dropoffTime]
WHERE {
WINDOW :Wl1l{ ?trans :fare ?fare. ?trans :pickupTime ?pTime}
WINDOW :W2{ ?ride :taxi ?taxi. ?ride :pickupTime ?pTime}
WINDOW :W3{ ?ride :triptime ?tripTime}
}
GROUP BY ?taxi

Example query on NYC taxi data SPARQL-like continuous query
To evaluate this query, a physical continuous query pipeline is

translated as illustrated in Fig. 1. At the root of this query pipeline,
the aggregation operator (AVERAGE) consumes inputs from the

4 http://chriswhong.com/open-data/foil_nyc_taxi/.

https://www.w3.org/community/rsp/
http://chriswhong.com/open-data/foil_nyc_taxi/

Download English Version:

https://daneshyari.com/en/article/4973355

Download Persian Version:

https://daneshyari.com/article/4973355

Daneshyari.com

https://daneshyari.com/en/article/4973355
https://daneshyari.com/article/4973355
https://daneshyari.com

