Web Semantics: Science, Services and Agents on the World Wide Web 40 (2016) 52-64

Web Semantics: Science, Services and Agents

Contents lists available at ScienceDirect

VICES &

on the World Wide Web ol

WORLD WIDE WEB

journal homepage: www.elsevier.com/locate/websem

Adapting ontologies to best-practice artifacts using transformation
patterns: Method, implementation and use cases

@ CrossMark

Vojtéch Svatek *, Marek Dudas, Ondrej Zamazal
Department of Information and Knowledge Engineering, University of Economics, W. Churchill Sq.4, 13067 Prague 3, Czech Republic

ARTICLE INFO

Article history:

Received 2 November 2015
Received in revised form

16 April 2016

Accepted 25 July 2016

Available online 16 August 2016

ABSTRACT

Reengineering an existing ontology to get it aligned with best practices, represented as design patterns or
core ontologies, can be challenging. We demonstrate how the versatile PatOMat framework for pattern-
based ontology transformation, together with the GUIPOT Protégé plugin as its front-end, can be used to
fulfill this task. Two different use cases are presented. One consists in introducing role-based modeling,
mediated by the AgentRole content pattern, into a legacy ontology; it has been applied on the complete
OntoFarm collection, containing 16 heterogeneous ontologies on ‘conference organization’. The other
consists in more lightweight adaptation of legacy ontologies to multiple aspects of style of a core domain

gi{‘;v]%i;;' ontology; it has been applied on six ontologies that have been converted to the format of GoodRelations,
Transformation a core ontology for e-commerce. While the former study was carried out by an experienced knowledge
Pattern engineer, who analyzed the influence of ontology expressiveness and other formal features on the
Role efficiency of transformation, the latter study involved 13 students with limited training, thus mapping, to
E-commerce a large degree, the role of human factor in the transformation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The establishment of the OWL language [1] as de facto standard
for ontologies on the web is being only gradually followed by the
establishment of best practices for creating content in this language.
Meanwhile, thousands of OWL ontologies have been built for
various domains. Preserving valuable knowledge contained in
these ontologies while taking into account the best practices that
hold either generally or within a specific domain is an important
task.

While best practices can often have the form of conventions
applied along the whole ontological model, in this paper we are
interested in best practices incarnated in compact artifacts that
are themselves expressed in the OWL language: either as fully-
blown ontologies (foundational ones or core ones within a domain)
or as smaller, widely usable ontological modules: ontology content
patterns 2], further just CP for brevity. In both cases we can assume
that this best-practice artifact (BPA) is to be integrated into the
legacy ontology (LO), typically as its root portion. However, merely
grafting the LO upon the BPA as it is may be unfeasible, since they

* Corresponding author.
E-mail addresses: svatek@vse.cz (V. Svatek), marek.dudas@vse.cz (M. Dudas),
ondrej.zamazal@vse.cz (0. Zamazal).

http://dx.doi.org/10.1016/j.websem.2016.07.002
1570-8268/© 2016 Elsevier B.V. All rights reserved.

may differ in terms of their modeling style; LO then has to be
transformed to the style of the BPA. Examples of modeling style
differences include:

e The use of a plain binary object property (e.g., boughtFrom)
vs. its reification allowing to involve further arguments (e.g., a
Purchase class).

e The modeling of a general concept as a class, e.g., DomesticCat
with physical animals as instances, vs. meta-modeling it
as an individual, e.g., individual DomesticCat as instance of
class BiologicalSpecies (note that BiologicalSpecies could not be
conveniently part of the model in the first modeling style,
since it would be a second-order class inexpressible in OWL). A
specific variant of this modeling dichotomy is that of choosing
between expressing a concept taxonomy as OWL hierarchy or
as a SKOS' concept scheme.

e The use of an object property (e.g., country valued by DBpedia?
URIs) vs. data property (valued by codes such as “US”, “UK” or
“DE").

In our previous work on the PatOMat project’> we already ad-

dressed the general need for style transformation in ontologi-
cal engineering. A general framework, a simple transformation

1 http://www.w3.0rg/2004/02/skos/.
2 http://dbpedia.org.
3 http://patomat.vse.cz.

http://dx.doi.org/10.1016/j.websem.2016.07.002
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2016.07.002&domain=pdf
mailto:svatek@vse.cz
mailto:marek.dudas@vse.cz
mailto:ondrej.zamazal@vse.cz
http://www.w3.org/2004/02/skos/
http://dbpedia.org
http://patomat.vse.cz
http://dx.doi.org/10.1016/j.websem.2016.07.002

V. Svdtek et al. / Web Semantics: Science, Services and Agents on the World Wide Web 40 (2016) 52-64 53

pattern language, a set of RESTful services and various graphical
user-oriented tools have been developed. They have also been
thoroughly exemplified for two scenarios associated with frequent
tasks of ontological engineering on the semantic web:

1. ontology matching: if the two ontologies to be matched differ in
their modeling style, we can attempt to transform the modeling
style of the one so as to make automated matching to the other
easier [3];

2. ontology language profiling: if an ontology is intractable for a
reasoner that only operates over a certain explicit or implicit
OWL sub-language (profile), we can change the style of the
ontology in terms of replacing the problematic constructs with
tractable ones [4].

To the difference of these two transformation scenarios, in
which the ontology is to comply with some structure that remains
external, the third one discussed here is that of allowing for
smooth inclusion of a BPA (content pattern or ontology) as direct
part of the current ontology, as outlined above. In our very early
research published in a workshop paper [5], we demonstrated the
possibility of such a transformation on a tiny example comprising
a single ontology (dealing with conference organization) wrt. a
single content pattern, AgentRole (making role-based modeling
explicit in OWL ontologies). The current paper extends the
previous one [5] along numerous axes:

e A new graphical tools meanwhile developed, the GUIPOT
Protégé plugin for interactive transformation (see end of next
section), is exploited.

e Adaptation of ontologies to AgentRole is studied for two
different kinds of inputs: class structures as in the previous
paper [5], but also property structures.

e While the previous paper [5] merely discussed different
transformation options for adaptation of an ontology to
AgentRole, we now present empirical results achieved on
sixteen ontologies from the OntoFarm collection, dealing with
conference organization.

e Also the actual options discussed have been radically changed.
The previous paper [5] reflected the effort to closely mimic
the five modeling approaches used in the W3C pattern for
‘classes as property values’ [6]. We however later found the
analogy with this pattern as too shallow to warrant such a close
alignment, and rather proposed our own, more straightforward,
systematization.

e Aside the ‘role-modeling’ use case, another use case is added,
which addresses the integration of a whole core ontology
for e-commerce, GoodRelations, into six independently-built
ontologies mostly describing customer products.* This new
use case description encompasses a usability study with 13
subjects.

The rest of the paper is structured as follows. Section 2 briefly
reviews the PatOMat framework, transformation language and
processing services. Section 3 summarizes the ontology matching
scenario of PatOMat application from its seminal paper [3] as
starting point, and outlines the new scenario of embedding a
BPA into a legacy ontology. Section 4 presents the first use
case, where the AgentRole content pattern is included as BPA:
the AgentRole pattern itself, the legacy ontologies (OntoFarm
collection), transformation alternatives, and empirical results. In
Section 5 the second use case is presented in a similar structure,
although slight alteration of the section structure has been
incurred by the different nature of the use case; the BPA is now
the GoodRelations ontology and the LOs are six product ontologies.
The rest of the paper summarizes and compares both use cases
(Section 6), surveys some related work (Section 7), and provides
conclusions and future prospects.

4 An early version of this use case, with one ontology only and much less detailed
evaluation, has been described in a recent conference paper [7].

2. PatOMat principles and implementation

We only introduce the PatOMat transformation framework very
briefly. The conference paper [3] provides more details about its
initial principles and motivations, and at the project website there
is a fully-fledged tutorial for the current version.”

The central notion in PatOMat is that of transformation pattern
(TP). A TP contains two ontology patterns (the source OP and the
target OP) and the description of transformation between them,
called pattern transformation (PT). The representation of OPs is
based on the OWL 2 DL profile. However, while an OWL ontology
only refers to particular entities, e.g., to class Person, in the patterns
we also use placeholders. Entities are specified (i.e. placeholders
are instantiated) at the time of instantiation of a pattern. An OP
consists of entity declarations (for placeholders as well as specific
entities), axioms, and naming detection patterns (NDPs); the last
captures the naming aspect of the OP important for its detection.
A PT consists of a set of transformation links and a set of naming
transformation patterns (NTPs). Transformation links are either
logical equivalence relationships or extralogical relationships holding
between two entities of different types. NTPs serve for generating
new names for old or newly created entities. Naming patterns refer
to passive naming operations such as detection of a head noun for a
noun phrase, as well to active naming operations such as derivation
of verb form of a noun.

The framework prototype implementation is available either
as a Java library or as three core services, all accessible via the
web interface at http://owl.vse.cz:8080/patomat/. The Java library
has been directly integrated into three tools: our GUIPOT tool
and two third-party ones — the ORE tool® for ontology repair [8]
and a version of the XDTools framework’ supporting the eXtreme
Design methodology of ontology development [9]. The whole
transformation is divided into three steps, which correspond to
three core services:

e The OntologyPatternDetection service takes the transformation
pattern and a particular original ontology on input, and returns
the binding of entity placeholders on output, in XML. The
structural/logical aspect is captured in the structure of a
SPARQL query generated automatically by parsing axioms (in
Manchester syntax [10]) from the source OP and transforming
them into the Turtle syntax of the graph pattern.® Further, the
naming aspect is dealt with based on the NDP.

e The InstructionGenerator service takes the particular binding
of placeholders and the transformation pattern on input, and
returns particular transformation instructions on output, also
in XML. Transformation instructions are generated according to
the transformation pattern and the pattern instance.

e The OntologyTransformation service takes the particular trans-
formation instructions and the particular original ontology on
input, and returns the transformed ontology on output.

The third service is partly implemented over the OWL-APL° We
use OWL-API for the operations on axioms, for adding entities, for
re/naming entities according to naming transformation patterns
and for adding OWL annotations.

The transformation framework is now also accessible via a
graphical user interface called GUIPOT'® [11], implemented as

5 http://owl.vse.cz:8080/patomat/tutorial/.
6 http://ore.aksw.org/.
7 http://stlab.istc.cnr.it/stlab/XDTools.

8 Some specific axioms (e.g. annotations) are also transformed into the SPARQL
syntax using a combination of hard-coded rewriting and Manchester syntax
parsing.

9 http://owlapi.sourceforge.net/.

10 por “Graphical User Interface for Pattern-based Ontology Transformation”.

http://owl.vse.cz:8080/patomat/
http://owl.vse.cz:8080/patomat/tutorial/
http://ore.aksw.org/
http://stlab.istc.cnr.it/stlab/XDTools
http://owlapi.sourceforge.net/

Download English Version:

https://daneshyari.com/en/article/4973367

Download Persian Version:

https://daneshyari.com/article/4973367

Daneshyari.com

https://daneshyari.com/en/article/4973367
https://daneshyari.com/article/4973367
https://daneshyari.com

