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a  b  s  t  r  a  c  t

Electrodermal  Activity  (EDA)  −  an  index  of sympathetic  nervous  system  arousal  −  is  one of  the  primary
methods  used  in  psychophysiology  to assess  the  autonomic  nervous  system  [1].  While  many  studies  col-
lect EDA  data  in  short,  laboratory-based  experiments,  recent  developments  in wireless  biosensing  have
enabled  longer,  ‘out-of-lab’  ambulatory  studies  to become  more  common  [2].  Such  ambulatory  methods
are beneficial  in  that  they  facilitate  more  longitudinal  and  environmentally  diverse  EDA  data  collection.
However,  they  also  introduce  challenges  for  efficiently  and accurately  identifying  discrete  skin  conduc-
tance responses  (SCRs)  and  measurement  artifacts,  which  complicate  analyses  of ambulatory  EDA data.
Therefore,  interest  in developing  automated  systems  that  facilitate  analysis  of EDA  signals  has  increased
in  recent  years.  Ledalab  is one  such  system  that  automatically  identifies  SCRs  and  is currently  considered
a  gold  standard  in  the field  of ambulatory  EDA  recording.  However,  Ledalab,  like other  current  systems,
cannot  distinguish  between  SCRs  and  artifacts.  The  present  manuscript  describes  a  novel  technique  to
accurately  and  efficiently  identify  SCRs  and  artifacts  using  curve  fitting  and  sparse  recovery  methods
We  show  that  our  novel  approach,  when  applied  to expertly  labeled  EDA  data,  detected  69%  of the  total
labeled  SCRs  in  an  EDA  signal  compared  to 45%  detection  ability  of  Ledalab.  Additionally,  we demonstrate
that our  system  can distinguish  between  artifact  and  SCR  shapes  with  an  accuracy  of  74%.  This  work,  along
with our  previous  work  [3], suggests  that  matching  pursuit  is  a viable  methodology  to  quickly  and  accu-
rately  identify  SCRs  in ambulatory  collected  EDA  data,  and  that  artifact  shapes  can  be  separated  from  SCR
shapes.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Electrodermal Activity (EDA) − an index of sympathetic ner-
vous system activity − is one of the primary methods employed
in psychophysiological research [4] and is widely used to quantify
autonomic and psychological arousal [5]. Formally, EDA is a mea-
sure of electrical conductance on the skin surface, which changes as
sweat is released by eccrine sweat glands [6]. Fluctuations in skin
conductance are linked to a specific set of brain circuitry [7], and
can be used to reveal when psychologically salient events occur.
Using this link, EDA has been widely employed to investigate a vari-
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ety of psychological states, including stress, depression, anxiety,
attention, pain, and information processing [8,9,1].

EDA signals are traditionally separated into three distinct com-
ponents: skin conductance level (SCL); skin conductance response
(SCR); and artifacts. SCL, or tonic response, is a slowly fluctuating
response that typically ranges between 2 and 20 �S and reflects
general trends in level of activation. It is common to remove the
tonic level from an EDA signal during analyses given that 1) it is less
clear how psychological events relate to tonic changes [1] and 2)
EDA baselines are rarely consistent within or between individuals
due to hydration status, recording site, eccrine sweat gland density
at site of recording, and psychological state [1]. In contrast, SCRs
are quick responses superimposed on the tonic response that can
be more directly linked to psychological events [10]. SCRs typically
have a predictable shape that can be characterized by rise time,
amplitude, and half recovery time. In healthy adults, rise time is
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Fig. 1. Parameters used to characterize SCRs.

usually between 1 and 3 s, amplitude often varies, but a minimum
is commonly set between 0.01 and 0.05 �S, and half recovery time is
typically between 2 and 10 s [1]. Fig. 1 shows the typical shape and
parameters that can be used to describe an SCR. A complicating fac-
tor occurs when a second SCR is elicited before the previous SCR has
fully recovered. This case, referred to as compound SCRs, indicates
that two separate stimuli or psychologically different events have
occurred [11]. As compound SCRs may  be caused by different stim-
uli, accurate identification of each SCR is important during analysis.
Finally, a common feature in EDA data are artifacts resulting from
contact changes (i.e., increased or decreased pressure of the senor
on the skin), wearer movement, shifts in ambient environmental
temperature, or electrical interference. While the curvature of an
artifact can vary widely, they are often, and problematically, sim-
ilar in shape and phase to SCRs. Due to this similarity between
artifacts and SCRs, identifying artifacts using current practices is
a challenging and manually intensive endeavor.

Until the early 2000s, most studies employing EDA were
restricted to short-term assessments in laboratory settings [9].
The recent advent and wider availability of ambulatory recording
devices has made it increasingly feasible to gather EDA longitu-
dinally in daily life, opening the exciting possibility of evaluating
unique variance across time-scales and settings. For example, a
study investigating panic disorders found that SCL trends in par-
ticipants with panic disorders were significantly elevated during
longer ambulatory recordings than in shorter-term assessments in
a laboratory setting [12]. While advances in wireless biosensing
have allowed for more studies to be conducted in ambulatory set-
tings, the challenges associated with artifact detection and robust
SCR identification have hindered efficient and accurate analyses of
these signals [9].

To further the utility of ambulatory EDA data, the current
manuscript presents a novel strategy for automatically identifying
SCRs and removing artifacts. We  present the performance of our
methods compared to expert manually labeled EDA data. EDA data
used for testing was acquired from 55 healthy participants in a lab
setting in response to a standardized set of evocative photos. While
we will ultimately apply our novel approach to ambulatory data,
using data collected in a lab setting provided two major benefits: 1)
using standardized evocative photos as a stimulus is a well-studied
and widely used approach to elicit SCRs and 2) expert human coders
provided labels, coded from videos, for the responses enabling a
ground truth with which to compare our method’s performance.
Using the expert labels as ground truth, we evaluated our method’s
accuracy in automatically identifying SCRs compared to a current
gold-standard software, Ledalab. We  also report the separability
between SCR and artifact shape as a first step towards moving our

method to ambulatory collected EDA data. Finally, we present the
possible directions this work could take in the future work section.

1.1. Current analysis methods

1.1.1. SCR detection
Traditionally, EDA signals are analyzed by hand, and, in fact, the

Society for Psychophysiological Research still recommends manual
analysis for identifying SCR locations and removing artifacts [11].
However, manual analysis is time-consuming and prone to human
error and inconsistency. As a first step towards more automated
analysis methods, many groups have developed different models
to represent the shape of an SCR. A popular model used in several
recent studies is the Bateman equation:

b (t) = e
−t
�2 + e

−t
�1 (1)

In (1), t is time and �1and �2 are parameters that characterize
the shape of the function. The Bateman function is characterized
by a steep onset followed by a slow recovery period, controlled
by �1 and �2 respectively [4]. Because the Bateman equation
relies on only two  parameters, minimal computation complexity
is required to estimate optimal parameters and fit to an SCR, mak-
ing it ideal for different SCR detection software [10], [13]. Using
this model as the basis for an SCR shape, several groups have cre-
ated software capable of analyzing EDA data and determining the
location of SCRs; however, most of these methods were developed
for short, laboratory-based studies and have not been optimized
for longer ambulatory recordings [14]. Model-based approaches
employ psychophysiological assumptions to develop mathematical
models describing how an underlying process generates observed
data [14]. Two model-based systems currently considered gold-
standard for EDA analysis are SCRalyze and Ledalab [15,16].
However, while both systems have been shown to perform well
when analyzing EDA signals collected in the lab, they may not per-
form well with ambulatory signals [15,17,16]. One of the major
drawbacks of SCRalyze is that it relies on convolution with a driver
function to locate SCRs in the signal before employing probabilistic
inversion to estimate the parameters of the SCRs. This convolu-
tion and subsequent estimation relies on prior knowledge about
the location of a stimulus or event that evoked an SCR [15], [14].
When this prior knowledge is unknown, for instance when EDA
is collected outside of a controlled laboratory setting, these sys-
tems may not accurately locate SCRs. For further details the reader
is referred to the original papers [15,17,18]. Similar to SCRalyze,
Ledalab uses the Bateman equation as an impulse response that,
when deconvolved with the signal, is used to identify the onsets
of individual SCRs. To improve goodness of fit, Ledalab uses gradi-
ent descent to optimize the �1and �2 parameters to better fit SCRs
found across the signal [16]. Ledalab is slow due to its optimization
process and not robust to artifacts, making it difficult to scale to
longer and more artifact-laden ambulatory signals.

Another interesting automated SCR identification approach
recently proposed is convex optimization. Convex optimization
allows the problem to be solved efficiently using a sparse QP-
solver [19]. While the algorithm appears conceptually promising,
in-depth quantitative analyses of its performance is currently based
on simulated data, while only an observatory analysis is provided
for the SCR detection with real data [19]. Because a full quantitative
analysis of non-simulated data is not provided, a true comparison
between this method and our novel approach is not possible at
this time. Additionally, this algorithm only considers noise as iid
white Gaussian but does not consider artifacts caused by movement
or touching the recording sensor [19]. Not being robust to these
types of artifacts could degrade the performance of this algorithm
if applied to ambulatory data and make it difficult to successfully
scale analysis for ambulatory data.
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