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a  b  s  t  r  a  c  t

The  thermodynamics  of  three-dimensional  curves  is  explored  through  numerical  simulations,  providing
room  for  a broader  range  of applications.  Such  approach,  which  makes  use  of elements  of  information
theory,  enables  the  processing  of parametric  as  well  as  non-parametric  data  distributed  along  the  curves.
Descriptors  inspired  in thermodynamic  concepts  are  derived  to  characterize  such  three-dimensional
curves.  The  methodology  is applied  to  characterize  a sample  of  48  human  coronary  arterial  trees  and
compared  with  standard  geometric  descriptors.  As an  application,  the usefulness  of  the  thermodynamic
descriptors  is tested  by  assessing  statistical  associations  between  arterial  shape  and  diseases.  The  feature
space defined  by  arterial  descriptors  is analyzed  using  multivariate  kernel  density  classification  meth-
ods.  A two-tailed  U-test  with  95%  confidence  interval  showed  that  some  of  the  proposed  thermodynamic
descriptors  have  different  mean  values  for  healthy/diseased  left anterior  descending  (LAD)  and  left  cir-
cumflex  (LCx)  arteries.  Specifically:  in  the  LAD,  the temperatures  based  on  mean  number  of intersection
points  and  curvature  are  larger  in healthy  arteries  (p  <  0.05);  in the  LCx,  the  intersection  counting  pres-
sure  is  larger  in  healthy  arteries  (p <  0.05).  Moreover,  the shape  of  the right  coronary  artery  is  thoroughly
characterized  by these  descriptors.  Specifically:  intersection  count  thermodynamics,  i.e. entropy,  tem-
perature  and  pressure  are  larger  in  �-Shape  RCAs,  in  turn  curvature  based  entropy  and  pressure  are
larger  in  C-Shape  RCAs  (p  < 0.05).

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The theory known as thermodynamics of plane curves was orig-
inally proposed by Mendès France [1,2]. The core idea was to
characterize planar curves with classical thermodynamics quanti-
ties, e.g. entropy, temperature and pressure, preserving analogies to
the corresponding physical laws. The very foundation of the theory
relies on a theorem from the field of integral geometry, known as the
Cauchy–Crofton theorem [3], which states that the expected num-
ber of intersections (n̄) between a random line intersecting a plane
curve �, is related to the length (�) of � and the perimeter (C) of its
convex hull. The link to thermodynamics came from an information-
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theory based analysis of the discrete probability distribution (pn) of
the intersection count function.

Over the years the ideas behind the theory of thermodynamics
of plane curves were further explored in close relation to fractal
theory, with strong theoretical flavors and a modest number of
applications. For example, [4] revisited the theory for planar curves
and related the entropy to the notion of dimension of curves. In
[5] used the rationale behind thermodynamics analogies to define
the temperature of non-random maps. In [6] adapted the concept
of entropy for application in time/spatial series, showing prac-
tical examples in geological data processing. The same research
group used entropy of time/spatial series to the identification of
functional relationships between carbon dioxide concentration and
atmospheric pressure in caves [7]. More recently, [8,9] adapted
the entropy of curves, generalizing it to an arbitrary number
of dimensions, with application to analysis and classification of
dynamical systems. In [10] recently presented applications of the n̄,
also known as inconstancy, to numerical sequences and proposed
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some practical applications. More recent contributions in the area
focused on the use of a variety of generalized entropy definitions,
like Rényi’s [11].

It is worth to remark that neither the entropy adaptations for
time/spatial series [6], nor the one proposed by [8] for curves in R

n,
are linked to the expected number of intersection (n̄) between a
curve and hyperplanes, which is a cornerstone of the original the-
ory. In fact, both works proposed a new definition of the entropy
function based on the series/curve characteristics, without consid-
ering any probability distribution. This strays those contributions
from the original notion: an information-theory-based entropy
with analogy to statistical mechanics.

In this work, we present a natural extension of the thermody-
namic descriptors to curves in three-dimensional (3D) space. In
order to do that, we use directly the probability distribution pn

instead of the Cauchy–Crofton theorem. A computational approx-
imation of pn allows the numerical estimation of the entropy,
temperature and pressure descriptors of a 3D curve. The use of
probability distributions also inspired a generalization of these
thermodynamic descriptors for characterizing curves using spa-
tially distributed information, e.g. curvature, torsion.

There are several applications fields in which the characteriza-
tion of 2D or 3D curves are valuable, i.e. spatio-temporal trajectory,
numerical series, signal processing, handwriting and shape analy-
sis (from contours or skeletons). To use the proposed framework
in such fields, a representation of input data in the form of a curve,
is required. In this work, as application examples, we use thermo-
dynamic descriptors for the characterization of human coronary
arteries, extracted from patient-specific medical images. The moti-
vation and context for the use of such dataset are stated in Section
3.

2. Thermodynamics of curves in 3D space

Consider a curve � in 3D space. We  define pn as the probability
of a random plane intersecting � at n points. Therefore, the mean
number of intersection points of a random plane is n̄ = ∑

npn.
Then, we introduce the Shannon’s measure of entropy from infor-
mation theory [12],

H = −
∞∑
n=1

pn log pn. (1)

In physics, finding the probability distribution p that maximizes
H, is the basis of the so called MaxEnt thermodynamics principle
[13,14], which explains statistical mechanics and equilibrium ther-
modynamics as inference processes. Maximization of H subjected
to a restriction on the mean value was first tackled by [15]. The clas-
sical solution, known as Gibbs algorithm, makes use of Lagrange
multipliers to find the roots of the functional

L(p) = −
∞∑
n=1

pn log pn − ˇ

(
n̄ −

∞∑
n=1

npn

)
− �

(
1 −

∞∑
n=1

pn

)
. (2)

Solving the equation L′ = 0 yields

pn = (eˇ − 1)e−ˇn,  ̌ = log
(

n̄

n̄ − 1

)
, e−1−� = eˇ − 1, (3)

then, the maximum entropy corresponds to a curve in “thermody-
namic equilibrium”, and can be written in terms of n̄ as

Hmax = log (n̄) + ˇ

eˇ − 1
= n̄ log (n̄) − (n̄− 1) log (n̄− 1).  (4)

In quantum thermodynamics, pn usually represents the probability
that a system of particles (e.g., atoms or molecules) is in the discrete
energy level En. Furthermore, the classical definition of temperature

results T = kˇ−1, where k is the Boltzmann constant (hereafter taken
equal to one). In the present context the temperature of a curve can
be defined using this analogy, that is

T = 1
ˇ

=
[

log
(

n̄

n̄ − 1

)]−1

. (5)

When the temperature vanishes (T = 0), the curve freezes to
a straight line n̄ = 1. Furthermore, the entropy also vanishes
(H = Hmax = 0), which agrees with classical thermodynamics, for
which, at zero temperature the entropy of the system vanishes.

In an attempt to push further the analogy with physics, we
define the pressure (P) of a curve in terms of its entropy, Eq. (1),
and its temperature, Eq. (5), in analogy with the thermodynamics
of ideal gases, that is:

H = �

1 − �
log T + log P, (6)

where � is the ratio of specific heats, and the universal gas constant
is set to unity. The motivation of Eq. (6) is that the spatial configura-
tion of random intersections are analogous to spatial configurations
of point particles. P and � will be taken as parameters that, hope-
fully, remain the same for a given class of curves (e.g., with similar
shape). Note that �(1 − �)−1 is the slope of the linear approximation
in a (log T vs. H) plot.

Particularly, the original theory of thermodynamics of plane
curves, as presented by Mendès France [1], relies on the
Cauchy–Crofton theorem [3], which states that, for a planar curve
�, the expected number of intersections between � and a random
line, is given by

n̄ =
∞∑
n=1

npn = 2�
C
, (7)

where � is the length of � and C is the perimeter of the convex hull
of �. Expression (7) allows analytical computation of Hmax and T for
a given planar curve �. Unfortunately, the lack of an extension of
the Cauchy–Crofton theorem to higher dimensions has limited the
theory to the plane. Nonetheless, observe that given pn, for example
obtained from numerical simulations, the thermodynamics can be
defined for any curve in any dimension, which is the matter of this
work.

2.1. An extended framework for the thermodynamics of curves

The most abstract setting of the curve thermodynamics frame-
work depends merely on a discrete probability distribution
function (DPDF). In Section 2, the DPDF accounts for the number
of intersections between a 3D curve and a random plane. The pro-
cedure to obtain a generalized thermodynamic characterization for
a given curve � is as follows:

i. Choose a random variable (X) associated to the geometry of the
curve, e.g. the number of intersection points of � with random
planes. Note that in the context of the thermodynamics analogy,
X ∈ G ⊂ R  represents the “energy levels” of the curve. Here, G
represents the subset of admissible energy levels.

ii. Compute the probability distribution, p(X, �) = p, for the given
curve �.

iii. Calculate curve descriptors based on the probability function,
for example

i. Statistical moments of p, such as the mean.
ii. Entropy (H) of p. In this work Shannon’s entropy is used, but

other definitions like [16] or [17] entropies may  be used as
well.

iii. Using the mean, thermodynamic descriptors can be calcu-
lated through equations (1), (5) and (6).
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