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a  b  s  t  r  a  c  t

The  contribution  of this  work  is the  generation  of  a control-oriented  model  for insulin-glucose  dynamic
regulation  in  type  1  diabetes  mellitus  (T1DM).  The  novelty  of  this  model  is that  it  includes  the  time-
varying  nature,  and  the  inter-patient  variability  of the  glucose-control  problem.  In  addition,  the  model
is  well  suited  for well-known  and  standard  controller  synthesis  procedures.  The  outcome  is  an  average
linear  parameter-varying  (LPV)  model  that  captures  the  dynamics  from  the  insulin  delivery  input  to
the glucose  concentration  output  constructed  based  on  the  UVA/Padova  metabolic  simulator.  Finally,  a
system-oriented  reinterpretation  of  the  classical  ad-hoc  1800  rule is  applied  to adapt  the  model’s  gain.

The  effectiveness  of  this approach  is  quantified  both  in  open-  and  closed-loop.  The  first  one  by com-
puting  the  root  mean  square  error  (RMSE)  between  the  glucose  deviation  predicted  by the  proposed
model  and  the  UVA/Padova  one.  The  second  measure  is  determined  by  using  the �-gap  as  a  metric  to
determine  distance,  in  terms  of  closed-loop  performance,  between  both  models.  For  comparison  pur-
poses,  both  open-  (RMSE)  and  closed-loop  (�-gap metric)  quality  indicators  are  also  computed  for other
control-oriented  models  previously  presented.

This  model  allows  the  design  of  LPV  controllers  in  a  straightforward  way,  considering  its  affine  depen-
dence  on  the  time-varying  parameter,  which  can  be  computed  in  real-time.  Illustrative  simulations  are
included.  In addition,  the presented  modeling  strategy  was employed  in  the  design  of  an  artificial  pan-
creas  (AP)  control  law  that  successfully  withstood  rigorous  testing  using  the  UVA/Padova  simulator,  and
that was  subsequently  deployed  in  a  clinical  trial  campaign  where  five  adults  remained  in  closed-loop
for  36  h.  This  was  the  first ever  fully  closed-loop  clinical  AP  trial  in  Argentina,  and  the  modeling  strategy
presented  here  is considered  instrumental  in  resulting  in  a very  successful  clinical  outcome.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

An artificial pancreas (AP) is a system that automatically con-
trols glycemia in controls glycemia in type 1 diabetes mellitus
(T1DM) patients by infusing an adequate amount of insulin, accord-
ing to the measured glucose level. The decision of how much insulin
to infuse is made by a control algorithm. In general, this algorithm is
based on a mathematical model that is required to suitably describe
the insulin-glucose dynamics. Thus, the model constitutes a key
element in the development of a reliable AP.
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Several simulation models have been proposed since the late
1970s [1–4]. They have been used to perform a vast amount of in
silico studies, giving an affordable and safe means of testing glucose
controllers. Thus, the use of computer simulation has accelerated
the development of AP [5].

The main goal of simulation models is to provide a blood glu-
cose prediction as close as possible to a real situation. However,
this class of models is not generally used for controller synthesis,
due to its excessive mathematical complexity. Therefore, simplifi-
cations of these models are generally considered at the controller
design phase, because most of the well established theory of control
law design accommodates only simpler models that are normally
referred to as control-oriented models. Thus, although control-
oriented models have to represent the underlying dynamics to
some degree, they are mainly obtained for synthesis purposes and
have a much simpler mathematical formulation.
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Fig. 1. Mean DC gain for the adult patients of the distribution version of the
UVA/Padova simulator, linearized at different glucose concentrations. The mean ±1
STD values are represented by vertical bars.

Another aspect that is worth considering in designing glucose
controllers is that most metabolic parameters related to the insulin-
glucose system are not easily identifiable in practice, and finding
each parameter of a complex and time-varying model is intractable.
Therefore, some tuning based on only a small number of easily
obtainable patient-specific characteristics is required in practice for
a safe and effective AP [6]. Consequently, a few works have been
focused on such personalization [7–11].

One interesting approach to obtain a personalized control-
oriented model is to adapt a low-order model structure based on a
priori patient information. For example, given the patient’s total
daily insulin (TDI), an insulin sensitivity factor can be obtained
using the so-called 1800 rule (1800/TDI) that is suggested in the
medical care literature [12]. From the medical point of view, the
1800 rule indicates the maximum drop in glucose concentration,
measured in mg/dl, after a 1 U injection of rapid-acting insulin.
Since the work in [13], that rule has been used in several studies,
both clinical and in silico, to tune the gain of a linear time invariant
(LTI) model to a particular patient [14–19]. Nevertheless, the 1800
rule is an empirical rule, and the clinical literature does not advise at
which glucose concentration it works best, or is most appropriate.
This is important because the patient’s insulin sensitivity depends,
amongst other factors (see [20,21]), on the glucose concentration,
meaning that an (LTI) representation of the insulin-glucose sys-
tem is not enough to totally describe it. This nonlinear behavior
is illustrated in Fig. 1, where the mean DC gain for all the in silico
adults of the UVA/Padova metabolic simulator [22,23] linearized
at several glucose concentrations is depicted. Steady-state glucose
concentrations were achieved by only adapting the insulin infu-
sion rate, i.e., the higher the insulin infusion rate, the lower the
steady-state glucose concentration, and vice versa. Therefore, the
hypoglycemic region presented in Fig. 1 actually represents a hypo-
glycemic/hyperinsulinemic region, and the hyperglycemic region
actually represents a hyperglycemic/hypoinsulinemic region. In
order to understand the shape of that figure, both regions can be
analyzed separately as follows.

Concerning the hypoglycemic/hyperinsulinemic region, it can
be seen from Fig. 1 that there is an increase in insulin sensitiv-
ity when glucose decreases below approximately 120 mg/dl. In the
UVA/Padova model, it is assumed that the insulin-dependent uti-
lization increases when glucose decreases below its basal value,
which is 120 mg/dl on average. This coincides with clinical knowl-
edge [24,25]. The loss of insulin sensitivity when glucose decreases
below very low concentrations can be explained in the follow-
ing way. On the one hand, the insulin-dependent utilization in
the UVA/Padova model is described considering a “risk” function
that increases when glucose decreases below its basal value (the
lower the glucose value, the higher the risk), and saturates when
glucose reaches 60 mg/dl. On the other hand, there is a counterreg-
ulatory response due to the glucagon action. The static secretion of

glucagon increases when glucose decreases below its basal value.
Together, the increase in glucagon secretion and the saturation
of the “risk” function related to the insulin-dependent utilization
make the region on the left of Fig. 1 (glucose from 50 to 60 mg/dl)
less sensitive to insulin.

Concerning the hyperglycemic/hypoinsulinemic region, we are
aware of the basic clinical knowledge that indicates a loss of insulin
sensitivity in hyperglycemia. However, it should be considered that
such knowledge is generally based on hyperinsulinemic clamps
[26,27], and that a hyperglycemic/hypoinsulinemic event is quite
different to many, but not all, real-world hyperglycemic events,
which are usually induced by meal intake and are accompanied by
prolonged glucose appearance and increased insulin infusion. For
example, hyperinsulinemia is associated with insulin receptor defi-
ciency [28,29], and several works suggest that it is the main inducer
of insulin resistance, and not hyperglycemia per se [30–32]. In addi-
tion, basing a control law on this case may be safer than basing it on
the expectation of reduced insulin sensitivity, because doing so may
result in elevated insulin delivery and thus may lead to postprandial
hypoglycemia.

Multiple linear parameter-varying (LPV) models have been pro-
posed in the past [33–38]. An LPV model is a family of linear
time-varying systems described in standard state-space form, with
matrices (A, B, C, D) depending on a time-varying parameter vector
�(t), measured in real time:

ẋ(t) = A (�) x(t) + B (�)u(t)

y(t) = C (�) x(t) + D (�)u(t).
(1)

LPV models were introduced in the control community in the
early 1990s. The first significant results in terms of analysis and
controller synthesis can be found in [39–42]. It is a good way to
represent a large class of nonlinear models, and particularly, to
apply gain-scheduling control in a systematic way, with theoretical
guarantees of performance and stability [43]. While in traditional
gain-scheduling the gain of a linear controller is adjusted as the
operating condition changes (something typically used in aircraft
control), in LPV control, a smooth real-time adaptation of the con-
troller to the operating condition is provided. In addition, but at
the cost of conservatism, the approach can be applied to an even
wider range of systems known as quasi-LPV systems. In this case,
the time-varying parameter can be one of the states of the model,
in particular the output. Further comments on quasi-LPV models
can also be found in [39,44]. In [33] and [34], the Bergman minimal
model [1] was considered and transformed into a quasi-LPV model
by an appropriate choice of parameters. In [35–37], the Sorensen
compartmental model [2] was  linearized at different points, which
were defined as the vertexes of an affine-LPV model that covers the
original nonlinear one. This model was  used as an uncertainty LTI
model set, and an H∞ controller was  designed to control it, hence,
the time-varying characteristics were not exploited. Finally, in [38],
an LPV approach using the Cambridge model [4] was developed.

In this work, the discussion presented in [45] is considered and
adapted to the AP application. There, it is explained that the use of
complex, high-order models for synthesis is not necessarily related
to better closed-loop performance. In that sense, a simple third-
order LPV model from the insulin delivery input to the glucose
deviation output is proposed here, and personalized by a system-
oriented reinterpretation of the 1800 rule. Thus, a combination
of the model personalization using a priori patient-specific char-
acteristics with the time-varying description of the dynamics by
means of an LPV system representation, is achieved. Due to the
fact that this modeling strategy is intended mainly for controller
design, the �-gap metric ı� (see [46,47]) is employed to quantify
the quality of achievable closed-loop performance afforded by the
control-oriented model. Model identification and tuning are per-
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