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a  b  s  t  r  a  c  t

A  new  processing  framework  that  allows  detailed  characterization  of  the  nonlinear  dynamics  of  EEG
signals  at real-time  rates  is proposed.  In  this  framework,  the  phase  space  trajectory  is  reconstructed  and
the underlying  dynamics  of  the  brain  at different  mental  states  are  identified  by analyzing  the shape
of  this  trajectory.  Two  sets  of  features  based  on  affine-invariant  moments  and  distance  series  trans-
form  allow  robust  estimation  of  the  properties  of the  phase  space  trajectory  while  maintaining  real-time
performance.  We  describe  the  methodological  details  and  practical  implementation  of  the  new  frame-
work  and  perform  experimental  verification  using  datasets  from  BCI  competitions  II and  IV.  The  results
showed  excellent  performance  for using  the  new  features  as  compared  to competition  winners  and  recent
research  on  the  same  datasets  providing  best  results  in  Graz2003  dataset  and  outperforming  competition
winner  in  6 out of  9 subject  in  Graz2008  dataset.  Furthermore,  the  computation  times needed  with  the
new  methods  were  confirmed  to permit  real-time  processing.  The  combination  of  more  detailed  descrip-
tion  of the  nonlinear  dynamics  of EEG  and  meeting  online  processing  goals  by  the  new  methods  offers
great  potential  for several  time-critical  BCI  applications  such  as  prosthetic  arm  control  or  mental  state
monitoring  for safety.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Brain computer interface (BCI) is an alternative communication
pathway between the human brain and the external environment
through a computer [1]. BCI systems are used to assist disabled
people to control neuroprostheses and wheelchairs by detecting
their brain electrical activity during different mental tasks [2–4].
Different techniques can be used to measure brain activity such as
the electroencephalography (EEG), functional magnetic resonance
imaging (fMRI), electrocorticography (ECoG), magnetoencephalog-
raphy (MEG), and near infrared spectroscopy (NIRS) [5–8]. Among
those techniques, the EEG-based BCI systems are the most widely
used due to their relatively low cost, high temporal resolution, and
convenience for users [9].

The human brain shows EEG activity over the sensorimotor cor-
tex at mu  (8–13 Hz) and beta (14–25 Hz) frequency bands when
awake subject does not experience sensory or motor activities and
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this phenomenon is termed event-related synchronization (ERS)
[10]. In contrast, the mu  and beta rhythmic activities are attenu-
ated when a subject processes motor commands or sensory stimuli
and this phenomenon is termed as event-related desynchroniza-
tion (ERD) [11]. Fortunately, such ERS/ERD changes can be elicited
during the imagination of movements and hence can be used for
EEG-based BCI systems operated by motor imagery [12,13].

Different feature extraction and classification algorithms were
developed to interpret the brain electrical activity into commands
for external computers or devices. Krusienski et al. studied the rela-
tive BCI performance using Phase-Locking Value (PLV) features and
in combination with spectral power and coherence features [14].
Their results indicated that using spectral power features produced
similar classification performance as using PLV, coherence, or any
combination of these features. Brodu et al. introduced two sets of
features based on multifractal cumulants and predictive complex-
ity of the EEG signals [15]. The winner of BCI competition 2003
for dataset III extracted features using Morlet wavelets and used
the Bayesian classifier to differentiate between the imagination of
left and right-hand movements [16]. Xu et al. extracted statisti-
cal features over set of wavelet coefficients which were fed into a
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fuzzy support vector machine (FSVM) classifier to characterize the
time-frequency distribution of the EEG signals [17]. Their results
outperformed the winner of BCI competition 2003 for dataset III.
Zhou et al. proposed extracting bispectrum-based features to char-
acterize the non-Gaussian nature of EEG measurements leading to
even better results for the same dataset using different classifiers
[18]. On the other hand, Ang et al. proposed filter-bank common
spatial pattern algorithm to optimize the subject-specific frequency
band for classification of different motor imagery tasks [19]. Their
technique was the winner of BCI competition 2008 for datasets 2a
and 2b. Delgado et al. proposed new approach for classification of
motor imagery tasks based on the hidden conditional random fields
(HCRFs) [20]. The extracted features which include autoregressive
(AR) modeling of the EEG signals followed by the calculation of the
power spectrum were used to model the HCRFs. Their results out-
performed the results obtained by the winner of BCI competition
2008 for dataset 2a [20].

Despite the relative success of the above techniques, many of
the proposed feature extraction methods for EEG-based BCI sys-
tems assume linearity of the recorded EEG signals and hence ignore
the well-established nonlinearity of brain electrical activity. There-
fore, several methods were proposed to better model the nature of
EEG signals using features derived from nonlinear dynamical mod-
eling [21–23]. Many such features were proposed for the analysis
of EEG signals at different mental states. Carlino et al. calculated
the correlation dimension to differentiate between the EEG signals
of healthy and schizophrenic patients [24]. Sakkalis et al. inves-
tigated three measures to detect the absence seizures; namely, a
linear variance analysis approach, approximate entropy, and order
index [25]. Hosseinifard et al. used four nonlinear features includ-
ing correlation dimension, Lyapunov exponent, Higuchi fractal, and
detrended fluctuation analysis (DFA) with KNN classifier to differ-
entiate between normal and depression patients [26]. Banitalebi
et al. calculated some chaotic indices such as mutual informa-
tion, correlation dimension, Lyapunov exponent, and the minimum
embedding dimension with multi-layer perceptron classifier and k-
means support vector machine (KM-SVM) classifier to discriminate
different motor imagery tasks [27]. Fang et al. proposed extract-
ing features from the reconstructed phase space (RPS), which
is a transformation of the EEG time series into a geometrical
object embedded in a higher-dimensional space [28]. Their features
included amplitude frequency analysis (AFA) and autoregressive
(AR) modeling of RPS. Unfortunately, the calculation of most (if not
all) of such features is notoriously time-consuming, which makes
it impractical to develop online classification schemes with high
information transfer rates as required for BCI. So, the development
of techniques that account for nonlinear dynamical nature of EEG
signals while meeting online processing goals would potentially be
of significant impact on this field.

In this work, we propose a new processing framework that
allows more detailed characterization of the nonlinear features
of the EEG signals at real-time rates. In this technique, the phase
space trajectory is reconstructed and characterized using two  sets
of features based on affine-invariant moments and a new distance
series transform. Such features allow robust determination of the
characteristics of the phase space trajectory while being rather sim-
ple to compute to meet real-time performance requirements. We
describe the implementation of the new framework and perform
experimental verification using data sets from BCI competitions.

2. Methodology

The phase space reconstruction method by Packard et al. [32]
was proposed to reconstruct a system’s attractor using one or more
of its measured time series. Takens [33] showed that the recon-

structed phase space (RPS) had the same dynamical properties as
the true attractor of the system which produced the measured
signals. Consequently, it is possible to reconstruct attractors with
different topological properties using EEG measurements at dif-
ferent mental states assuming the human brain as a nonlinear
dynamical system. Fig. 1 shows a graphical representation of the
time-delay embedding procedure used to estimate RPS in this work.
The embedding dimension in this figure was  taken as 3 for clear
illustration. For the EEG signal at the top plot, three coordinate
points are required to create one point in a 3D phase space (bot-
tom left plot). Each point in the phase space is represented by three
values, which are the amplitude values of the signal at 3 consecu-
tive time points separated by time lag �. By repeating these steps for
each time point, we  can reconstruct the phase space of the underly-
ing dynamical system and obtain an equivalent attractor as shown
in the bottom right plot. The details of the time-delay embedding
process used in this work are provided in Appendix A.

2.1. Preprocessing

The EEG signals were filtered using either Butterworth band-
pass filter of order 3 or Chebyshev Type II band-pass filter of order
6. These filters and their parameters were utilized following the
winners of competition II and IV respectively [16,19]. An addi-
tional filtering using spectral subtraction denoising method was
used here for further noise rejection [36].

2.2. Feature extraction

Two sets of features are introduced in this work to represent
the complexity in the phase space trajectory; namely, the moment
invariant features and the distance series (DS) transform features.
The moment invariant features are used to quantitatively charac-
terize the shape of the RPS. On the other hand, DS features are
computed after a transformation of the multidimensional RPS into
a one-dimensional space. A set of DS-domain features are derived
based on the raw values of the transformed RPS, their autore-
gressive model coefficients, magnitude of their discrete Fourier
transform, and their wavelet decomposition coefficients.

2.2.1. Moment invariant features
Moments are quantitative measures that describe the distribu-

tion of a random variable whereby a set of moments with order
ranging from zero to order infinity uniquely determine its proba-
bility density function. In this study, we  consider the reconstructed
attractor as m-dimensional object in the phase space and charac-
terize its shape by moments.

Generally speaking, the moment of order p for an m-dimensional
object with density function � (S1, S2, . . ., Sm) = � (S) where Si is
a column in the reconstructed phase space Yi (m) is  given by the
Riemann sum as,

Mp1...pm =
∑K

j=1
. . .

∑K

j=1
Sp1

1j . . .Spmmj � (S)dS1. . .dSm, (1)

where p1 + p2 + . . . + pm = p, 0≤ p < ∞,  and K is the length of the
embedded dimensions Si, i = 1, 2, . . .,  m.  Similarly, the central
moments are given by,

�p1 ...pm =
K∑
j=0

. . .

K∑
j=0

(
S1j − S1j

)p1

. . .

(
Smj − Smj

)pm
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where S1 = M1...0
M0...0

, . . .,  Sm = M0...1
M0...0

. From the above expressions, such
moments will vary if an affine transformation is applied to RPS,
which is a clear disadvantage when trying to characterize such
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