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a  b  s  t  r  a  c  t

The  purpose  of  this  study  is  to  develop  a method  for  detecting  and  compensating  the  anomalies  of  contin-
uous glucose  monitoring  (CGM)  sensors  as  well  as detecting  unannounced  meals.  Both  features,  sensor
fault  detection/correction  and  meal  detection,  are  necessary  to have  a reliable  artificial  pancreas.  The
aim is  to  investigate  the best detection  results  achievable  with  the  proposed  detection  configuration
in  a perfect  situation,  and  to  have  the  results  as  a benchmark  against  which  the imperfect  scenarios
of  the  proposed  fault  detection  can  be compared.  The  perfect  situation  that  we  set  up here  is  in  terms
of  a  patient  simulation  model,  where  the  model  in the  detector  is  the  same  as the  patient  simulation
model  used  for  evaluation  of  the  detector.  The  detection  module  consists  of  two  CGM  sensors,  two  fault
detectors,  a fault isolator,  and  an  adaptive  unscented  Kalman  filter  (UKF).  Two  types of  sensor  faults,  i.e.,
drift and  pressure  induced  sensor  attenuation  (PISA),  are  simulated  by a Gaussian  random  walk  model.
Each  of  the  fault  detectors  has  a  local  UKF that receives  the signal  from  the  associated  sensor,  detects
faults,  and  finally  tunes  the  adaptive  UKF.  A fault  isolator  that  accepts  data  from  the  two  fault  detectors
differentiates  between  a  sensor  fault  and  an  unannounced  meal  appearing  as an anomaly  in the CGM
data.  If the  fault  isolator  indicates  a  sensor  fault, a  method  based  on  the  covariance  matching  technique
tunes  the  covariance  of the measurement  noise  associated  with  the faulty  sensor.  The  main  UKF  uses  the
tuned  noise  covariances  and  fuses  the  CGM  data  from  the  two  sensors.  The  drift  detection  sensitivity  and
specificity  are  80.9%  and  92.6%,  respectively.  The  sensitivity  and  specificity  of  PISA  detection  are 78.1%
and  82.7%,  respectively.  The  fault  detectors  can  detect  100  out  of  100  simulated  drifts  and  485  out  of  500
simulated  PISA  events.  Compared  to a nonadaptive  UKF,  the  adaptive  UKF  reduces  the  deviation  of  the
CGM  measurements  from  their  paired  blood  glucose  concentrations  from  72.0%  to 12.5%  when  CGM  is
corrupted  by  drift,  and  from  10.7%  to  6.8%  when  CGM  is  corrupted  by  PISA.  The  fault  isolator  can  detect
199  out  of 200  unannounced  meals.  The  average  change  in  the glucose  concentrations  between  the  meals
and the  detection  time  points  is  46.3  mg/dL.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

As the continuous glucose monitoring (CGM) sensor is one of the
main parts of an artificial pancreas (AP), the anomalies and faults
associated with the CGM sensor affect the performance and relia-
bility of the AP considerably. Consequently, the safety of patients
in an AP is critically connected to the reliability of the CGM sensors
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[1–4]. Recent advances in sensor technology have made it possi-
ble to achieve high accuracy CGM sensors. An example is the CGM
sensor under development by Roche (Roche Diagnostics GmbH,
Mannheim, Germany), which provides an aggregated mean abso-
lute relative difference (MARD) between the CGM readings and
their paired capillary blood glucose (BG) measurements of 9.2% [5].
A study by Bailey et al. [6] also indicated that the FreeStyle Libre
Flash glucose monitoring system (Abbott Diabetes Care, Alameda,
CA) has an overall MARD of 11.4% without the need for calibra-
tion within two weeks. However, the Flash sensor is not suited
for the AP application. Dexcom (San Diego, CA) also tested the
accuracy of the G4

®
Platinum (G4P) CGM system with the 505
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algorithm, achieving a MARD of 13% [7]. Furthermore, the Dexcom
G5

®
mobile CGM has been recently approved for insulin-dosing in

Europe, which indicates the acceptable reliability of the G5
®

sys-
tem for nonadjunctive use [8]. Despite these advances in the sensor
technology and accuracy, the CGM fault detection is still a challenge
that requires attention and it serves as an active research area [9].
In this study, we enhance the CGM data by developing an algo-
rithm for fault and meal detection. Fault detection improves the
CGM safety and detection of unannounced meals helps develop-
ing a fully automated AP. The faults that we aim to detect are drift
and the pressure induced sensor attenuation (PISA) artifact. Drift
remains the main reason for sensor calibration [10], and calibra-
tion for at least twice a day is recommended to compensate for the
sensor drift. Drift is the falsely slow variations of the CGM read-
ings due to foreign body response causing the inflammatory cells
to migrate to the sensor insertion site [11]. The inflammatory cells
produce compounds that interact with the glucose sensor and erro-
neously increase or decrease the glucose readings over the course
of time. PISA is another sensor anomaly and it is the low signal read-
ings caused by the compression of the sensor insertion site due to
pressure on the sensor [12].

Several methods have been proposed for outlier detection and
smoothing the CGM data. These methods include finite and infi-
nite impulse response filters [13,14], as well as model-based outlier
detection with adaptive and nonadaptive Kalman filters [15–18].
While these denoising methods effectively smooth the CGM signal
by filtering out the spiky outliers and noise, they are insufficient
to remove the manifestations of the sensor artifacts, such as drift,
from the CGM data. The reason is that the time scale of a sensor
drift could be comparable with the time scale of the signature of
the physiological events such as meal, insulin, exercise, and stress
on the CGM signal. This makes it difficult to detect the sensor
drift and differentiate it from the metabolic changes in the BG.
Consequently, a robust and safe AP requires additional sources of
information through physical redundancy (using more than one
CGM sensor) and analytical redundancy (using a model in addition
to the measurements) to detect and discriminate between drift and
the physiological events such as unannounced meals. While previ-
ous studies suggest methods for drift and PISA detection [19,20], the
literature on filtering out the drift and PISA events upon detection
is sparse.

We  previously developed a fault detector for the CGM data using
the extended Kalman filter (EKF) [21], which we further improved
by using an unscented Kalman filter (UKF) [22]. In the current
study, we use the fault detector with the UKF for the detection of
drift, PISA, and unannounced meals, and also for tuning an adap-
tive UKF upon fault detection, in a two-CGM sensor configuration.
Fig. 1 depicts the schematic configuration of the two CGM sensors,
the insulin pump, and the signal processing unit, for the proposed
method in a single-hormone AP. The adaptive UKF allows modi-
fying the covariance of the measurement noise in case the CGM
sensors are fault-corrupted. This mitigates the signature of a fault
on the filtered CGM data. We  also designed a fault isolator unit to
discriminate between a sensor fault and a change in the CGM signal
due to the patient’s metabolism variations. Examples of metabolic
variations are meal, exercise, stress, and variation of the insulin
sensitivity. Any of these events, if not correctly announced to the
model, manifests itself in the CGM signal in a way that is similar
to the manifestation of a sensor anomaly. As different treatment
should be applied for a sensor anomaly and a metabolic change, it
is also important that these two categories of events are detected
and differentiated accordingly. In our method, the UKF is tuned only
if the fault isolator indicates a sensor fault.

The rest of the paper is structured as follows. Section 2 describes
the Medtronic virtual patient (MVP) model for type 1 diabetes [23],
and our methods for simulating sensor drift and PISA. The MVP
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Fig. 1. Configuration of the two continuous glucose monitoring sensors, the insulin
pump, and the signal processing platform-implemented in a smart phone – for an
artificial pancreas.
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Fig. 2. The Medtronic virtual patient model for type 1 diabetes [23]. d: CHO ingestion
rate; d1 and d2: glucose masses (mg) in the stomach and small intestine compart-
ments, respectively; RA: glucose appearance rate; GB: blood glucose concentration;
GI: interstitial glucose concentration; u: insulin input rate; ISC: SC insulin concen-
tration; Ip: plasma insulin concentration; Ieff: insulin effect; �: measurement noise;
y: CGM measurement.

model is used for patient simulation and also in the UKFs. Section
3 explains the UKF for filtering, fault detection, and fault isolation
and meal detection. At the end, Section 3 presents the method for
tuning the measurement noise covariance with the local UKFs of
the fault detectors. Section 4 presents the results followed by the
discussions in Section 5 and concluding remarks in Section 6.

2. Simulation

2.1. Virtual patient model

We simulated the MVP  model [23], and the two-compartmental
model of carbohydrate (CHO) absorption [24], by means of stochas-
tic differential equations (SDEs). The model is based on the work
by Hovorka and associates [24–26]. Fig. 2 depicts the model and
Appendix A describes the model equations. In Fig. 2, u is the sub-
cutaneous (SC) insulin input rate (�U/min) and contains both basal
and bolus insulin administrations. ISC, Ip, and Ieff are the SC insulin
concentration (mU/L), the plasma insulin concentration (mU/L),
and the effect of insulin (min−1), respectively. GB is the blood
glucose concentration. Glucose diffuses from capillary blood into
interstitial fluid and the CGM sensor measures the interstitial glu-
cose (GI) concentration (mg/dL). The input d denotes the CHO
ingestion rate (g/min), d1 and d2 are the glucose masses (mg) in
the stomach and small intestine compartments, and RA is the glu-
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