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a  b  s  t  r  a  c  t

The  EEG  signal  of healthy  patient  can be recognized  as  an  output  of  a chaotic  system.  There  are  many
measures  of  chaotic  behaviour:  Hurst  and  Lyapunov  exponents,  various  dimensions  of attractor,  various
entropy  measures,  etc. We  prefer  permutation  entropy  of  equidistantly  sampled  data.  The  novelty  of  our
approach is  in bias  reduction  of  permutation  entropy  estimates,  memory  decrease,  and  time  complexities
of  permutation  analysis.  Therefore,  we  are  not  limited  by  the  EEG  signal  and  permutation  sample  lengths.
This general  method  was  used  for  channel  by channel  analysis  of  Alzheimer’s  diseased  (AD)  and  healthy
(CN)  patients  to  point  out  the  differences  between  AD  and  CN  groups.  Our  technique  also  enables  to study
the  influence  of  EEG  sampling  frequency  in a wide  range.  The  best  results  were  obtained  for  sampling
frequency  200 Hz,  using  at most  window  of  length  10.  In  the  case  of Alzheimer’s  disease,  we  observed  a
statistically significant  decrease  in  permutation  entropy  at all channels.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The diagnosis of Alzheimer’s disease (AD) is an up-to-date
problem which is solved by various techniques. Non-invasive
investigation of AD patients is preferred and both magnetic res-
onance imaging (MRI) and electroencephalography (EEG) are
frequently used for image and signal processing related to the diag-
nosis. Being focused on EEG analysis, spectral analysis is one of
the successful tools for AD investigation; however, the analysis of
non-linear EEG dynamic offers a more complex signal analysis. Cor-
relation dimension D2 is a good example of complexity measure
offering lower values for AD patients [1]. The same trend is seen
for the largest Lyapunov exponent �. Unfortunately, the calcula-
tion of D2 and �1 enforces the analysis of a very long time series
[2]. In this study, we prefer entropy estimation from the EEG signal
[3,4] because of the relationship between the complexity of non-
linear signals [5,6] and entropy estimate. Dauwels et al. [7] and
many other authors have shown that Alzheimer’s disease increases
power in the delta and theta-bands in frequency domain, but the
power spectrum is a global characteristics of the EEG signal mak-
ing it impossible to study and localise events in the signal. There
are many possibilities how to organize the entropy evaluation. Our
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approach is based on permutation entropy [8,9]. There are three
reasons why to use permutation entropy for diagnosing AD.  Human
brain activity can be interpreted as behaviour of a complex chaotic
system. Therefore, signals from EEG electrodes carry information
about the chaos inside the scalp. The hypothesis of decreasing
chaotic behaviour [3] during AD can be tested by using permuta-
tion entropy; the second reason for using it is its relative simplicity.
This term is exactly defined for the windowed signal and is directly
applicable to time series without any methodological difficulties.
The time complexity of permutation entropy calculation is accept-
able for small windows lengths as discussed in [8,9]. However, the
application to windows of size above 12 is impossible. Permutation
entropy has not yet been applied to longer windows. We  suppose
there is a chance to obtain new and significant results if the window
length were prolonged. Using hash table as a special data structure,
it is possible to calculate permutation entropy for window lengths
up to 30, which is the main novelty of our approach, as will be
explained in following sections.

2. Permutation entropy

2.1. Shannon entropy and its estimation

Definition. Shannon entropy [3,10] HS of a discrete random vari-
able X with possible values x1, . . .,  xm and probability mass function
p(X) is defined as
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Fig. 1. Permutation analysis: Original EEG (top), windowed w = 14 (middle), per-
mutation pattern (bottom).

H S = −
m∑

i=1

pi ln pi, (1)

where pi = p(xi).
If the probability function is unknown for an experimental data

set, and the number of possible values is finite for random variable
X, we estimate probability function pi by relative frequency pj,N and
number of events kN as

pj, N = nj

n
, (2)

k N =
∑
nj>0

1 ≤ k, (3)

where nj is the number of occurrences xi of random variable X, and
n the total number of measurement results. Then we  get the naive
estimate of Shannon entropy as

H N = −
k N∑
j=1

pj, N ln pj, N. (4)

This estimate is biased, and therefore it has a systematic error.
Miller [11] modified naive estimate HN using first order Taylor

expansion, which produces better estimation

HM = HN + kN − 1
2n

. (5)

2.2. Application to permutation analysis

Entropy estimates can be easily applied to permutation event
analysis [8,9]. The methodology from [11] estimates a smaller bias.
Let time series be {ak} k = 1T and sliding window {bk} k = 1w of
length w,  then we can substitute signal values bk in the window
with their orders and then obtain permutation pattern {�k} k = 1w .
The process of pattern conversion is depicted in Fig. 1 for original
EEG data 200 Hz-sampled for w = 14 and the 8th channel of CN
patient.

The universe of random variable X is a set of all permutations of
length w.  Therefore, the number of possible permutations is

m = w!; (6)

however, the number of various permutations in a given signal
cannot exceed the number of sliding samples as

kn ≤ n = T − w + 1. (7)

The number of occurrences of jth permutation pattern corresponds
to nj, and n is the total number of samples. The differences between
typical AD and CN patients are illustrated in Fig. 2. Supposing
ordering n(j) ≥ n(j+1) for j = 1, . . .,  m − 1, ten most frequent permuta-
tion patterns (n(1), . . .,  n(10)) were plotted to the union diagram
for fs = 200 Hz, w = 14, ch = 8. In the case of AD, we observed a
systematic gradual increase or decrease in the EEG signal with a
small fraction of exceptions. In the case of CN, however, the pat-
terns rarely increased, no systematic decreasing was  observed, and
the EEG signal exhibited higher diversity. Therefore, this primary
observation is in agreement with hypothesis of diminished EEG
signal entropy in the case of AD.

So now, we can directly use (4) and calculate the biased naive
estimation HN as in [10]. Our methodology is based on Miller’s
approach [11] and direct application of (5) to permutation patterns.
The difference between estimates (4) and (5) varies according to the
number of distinct patterns and time series length.

3. Permutation analysis for large samples

The main disadvantage of the original procedure of permutation
analysis [8] is in its memory and time complexities. The authors
implemented permutation memory as a matrix of w columns and
w! rows together with counter vector of length w!. This enables
permutation analysis on a typical computer only for w < 13. Tra-
ditional applications [8] of permutation entropy use a window of
length w < 8. The time complexity of single permutation counting
is also w!,  in the worst case. Therefore, for permutation analysis we
decided to use more sophisticated data structure. There are many
data structures and algorithms for realizing a look-up table as a kind
of memory with fast access. Our memory has to be optimized only
for two  operations: FIND and INSERT. We  used hash table with open
addressing and linear probe strategy [12] as a model which is easy
to realize. Let P > n be the optional prime number. Then the loading
factor is defined as a ratio  ̨ = n/P < 1. The mean number of permuta-
tion vector comparisons during the successful FIND operation was
determined [12] as

ET OPT = 1
2

(
1 + 1

1 − ˛

)
. (8)

For unsuccessful FIND operation and INSERT operation, the mean
number of permutation vector comparisons is higher [12] than in
the previous optimistic case

ET PES = 1
2

(
1 + 1

(1 − ˛)2

)
. (9)

Our tiny and fast implementation of permutation memory is a
matrix of occurred permutations with w columns and P > n rows
together with counter vector of length P. In the best (8) and the
worst (9) cases, the time complexity of single permutation count-
ing is constant and dependent only on the loading factor. This
enables very fast permutation analysis for higher sample length
w and long EEG sequences. The last implementation detail is how
to realize hash function index = h(�)  for the given permutation pat-
tern �. In the first step, by subtracting the vector of units from
vector �, we obtain digital form y = � − 1. Let R = w be the base of
a digital system. In the second step, we  calculate the value v of y
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