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a  b  s  t  r  a  c  t

Respiratory  rate  (RR)  estimation  from  the  photoplethysmogram  (PPG)  is  a challenging  problem  due  to
the nonstationarity  of RR  and  disturbance.  In this  work,  we  propose  a  novel  approach  to estimate  RR
from  the  PPG  signal  using  joint  sparse  signal  reconstruction  (JSSR)  and  spectra  fusion  (SF).  A  window  of
PPG signal  is  segmented  into  multiple  overlapped  measurements.  Sparse  spectra  of  these  measurements
are  estimated  by JSSR  using  the regularized  M-FOCUSS  algorithm.  The  kurtosis  of each  spectrum  is used
to classify  it  into  three  signal  quality  categories,  and  spectra  in  the highest  signal quality  category  are
fused  using  Respiratory  Rate  Tracking  (RRT)  to  estimate  RR.  Validated  on a public  benchmark  database
CapnoBase,  our  approach  outperforms  a state-of-the-art  algorithm  in accuracy  and  robustness  in  low
signal  quality  conditions.  This  is  the  first time  JSSR  has  been  used  for  RR  estimation  from  the  PPG  signal.
In  addition,  our  approach  works  well  with  a low  sampling  frequency  of  10 Hz  which  has  great  potential
to  be  used  in low-cost  wearable  devices.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Respiratory rate (RR), together with body temperature, heart
rate, and blood pressure, constitute the four primary vital signs
that indicate the status of the body’s vital functions. Abnormal RR
is often a sign of serious illness and can be used to predict clinical
deterioration [1–7]. Therefore, accurately estimating RR in hospital
settings is of great importance to both patients and health care
providers.

RR is measured by the number of breaths a person takes per
minute (breaths/min). Capnography monitors the concentration or
partial pressure of carbon dioxide (CO2) in the respiratory gases [8],
and therefore provides the most accurate RR measurement. But due
to its cumbersomeness, capnography is mainly used during anes-
thesia and intensive care. As an alternative solution, researchers
have used electrocardiogram (ECG) to derive RR [9–11]. Despite the
progress made, current hospital settings still suffer from inaccurate
RR monitoring. It was recently observed that the ECG-derived res-
piratory waveform often appeared flat in ICU patients who  were
breathing adequately [12]. Furthermore, the ECG system is still
bulky and requires trained professionals to operate.
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More recently, pulse oximeter became an inexpensive solution
for RR monitoring. Based on the principle of photoplethysmography
(PPG), it uses the Beer-Lambert law to estimate a person’s oxygen
saturation (SpO2) level by measuring the attenuation of light trav-
eling through the tissue at finger or earlobe [13,14]. The PPG signal
is modulated by respiration in three ways: (1) respiratory-induced
intensity variation (RIIV), (2) respiratory-induced amplitude varia-
tion (RIAV), and (3) respiratory-induced frequency variation (RIFV),
also known as baseline modulation, amplitude modulation, and fre-
quency modulation, respectively [15–18]. Many algorithms have
been developed to estimate RR from PPG signal using signal pro-
cessing and machine learning techniques such as neural network
[19], continuous wavelet transform [20,21], short-time Fourier
transform [22], independent component analysis [23], autore-
gressive model [24,25], variable-frequency complex demodulation
[26], particle filter [27], modified multi-scale principal component
analysis [28], pulse width variability [29], smart fusion [16], cor-
rentropy spectral density [30], probabilistic approach [18], sparse
signal reconstruction [31], multi scale independent component
analysis (MSICA) [32], and singular spectrum analysis (SSA) [33].
All these methods aim to estimate RR from a window of PPG signal.
However, for those spectral domain methods, they take the window
as a whole and ignores its local nonstationarity. In more difficult
situations when the respiratory modulation changes within the
window or when disturbance occurs in only part of the window,
the spectral domain methods may  have downgraded performance.
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Fig. 1. Diagram of the JSSR-SF approach.

In this paper, we propose a novel approach termed “Joint Sparse
Signal Reconstruction and Spectra Fusion” (JSSR-SF), which is a
spectral domain method but works with PPG windows that are
locally nonstationary. It consists of two major components: joint
sparse signal reconstruction (JSSR) and spectra fusion (SF). JSSR
aims to find a sparse representation of the PPG signal in the spec-
tral domain by solving the multiple measurement vector (MMV)
model [34]. We segment one PPG window into multiple overlapped
measurements and use JSSR to obtain sparse spectrum for each seg-
ment by exploiting a common sparsity structure. Based on that, we
propose two SF methods which estimates RR by fusing the sparse
spectra. The JSSR-SF approaches are tested on a public benchmark
database for respiratory signal analysis named CapnoBase [35] and
outperforms a state-of-the-art algorithm in root mean squared
error (RMSE), mean absolute error (MAE), mean absolute percent-
age error (MAPE), and number of reported RR estimates.

The paper is organized as follows. Section 2 describes the
proposed JSSR-SF approach in detail. Section 3 presents the exper-
imental results of JSSR-SF tested on CapnoBase. Section 4 discusses
the contribution and limitation of this work. Finally, Section 5 draws
the conclusion.

2. Joint sparse signal reconstruction and spectra fusion

The diagram of the proposed JSSR-SF approach is summarized in
Fig. 1. It consists of a preprocessing step and two major steps: JSSR
and SF. In this section, we first introduce the motivation behind the
JSSR-SF approach and then describe the JSSR and SF steps in more
details.

2.1. Motivation

Sparse signal reconstruction (SSR) is a signal processing tech-
nique aimed to find localized energy solutions from limited data.
It is advantageous over traditional spectral estimation techniques
such as periodogram because SSR has higher spectral resolution to
separate frequency components that are close to each other (see
Fig. 1 in [36] as an example). Recently, it was successfully used in

the “Sparse Signal Reconstruction and Respiratory Rate Tracking”
(S2R3T) approach for RR estimation from the PPG signal [31]. The
sparse spectrum of the PPG signal is estimated by solving the single
measurement vector (SMV) model as follows:

y = �x + w (1)

where y is an M × 1 vector of the PPG signal,  ̊ is an M × N basis
matrix, x is an N × 1 solution vector to be estimated, and w is an
M × 1 noise vector. It is assumed that M < N and ˚m,n = ej2�mn/N so
(1) can be thought of as a redundant discrete Fourier transform with
additive noise. Since this is an underdetermined system, we  need
to have some constraints otherwise x will have an infinite number
of solutions. For SSR, the constraint is that x is sparse, i.e., most
elements in x are zero or close to zero, and only a few elements
have large nonzero values. The “FOcal Underdetermined System
Solver” (FOCUSS) algorithm [37] can be used to find the solution
for (1).

The solution vector x represents the spectral energy of the
PPG signal, which is preprocessed by a band-pass filter to remove
baseline wonder, cardiac cycle modulation, and high-frequency
artifacts. Respiratory modulation remains in the preprocessed PPG
signal and is the major frequency component. As a result, the global
or local maximum of the sparse spectrum x can be used to estimate
RR, depending on the signal quality of the preprocessed PPG signal
[31]. This step to estimate RR from x is termed “Respiratory Rate
Tracking” (RRT) [31]. In RRT, kurtosis of the sparse spectrum is used
to classify the signal quality into three categories: good, moderate,
and poor. When signal quality is good, the global maximum in |x|
is used to estimate RR. When signal quality is moderate, the local
maximum in |x| near the previous RR is used to estimate RR because
the global maximum may  be from disturbance. In these two cases,
RR is estimated as

RR = nmax

N
Fs × 60 breaths/min  (2)

where n max is the position of the global/local maximum, N is the
length of x, and Fs is the sampling frequency of the PPG signal. When
signal quality is poor, no RR estimate is reported because the RR
estimate is not reliable.

Note that S2R3T is a spectral domain approach, and it estimates
the sparse spectrum from the whole PPG window. However, there
are many cases when respiration and/or disturbance are locally
nonstationary, which may  bias the peak of the sparse spectrum.
To overcome this drawback, we  propose using JSSR to estimate the
sparse spectra of the PPG signal by solving the MMV  model, and
then fusing the resulting spectra to estimate RR. We  provide more
details of each step in the next two  subsections.

2.2. Joint sparse signal reconstruction

JSSR is an extension of SSR when multiple measurements
are available and we  want to estimate localized energy solution
for each measurement using a common basis matrix. It can be
expressed by the MMV  model below:

Y = �X  + W (3)

where Y is an M × L matrix consisting of L measurements of the PPG
signal,  ̊ is an M × N basis matrix with ˚m,n = ej2�mn/N, X is an N × L
solution matrix to be estimated, and W is an M × L noise matrix.
Note that (3) can also be expressed as

yi = ˚xi + wi for i = 1, 2, . . .,  L (4)

where Y = [y1 y2 . . . yL], X = [x1 x2 . . . xL], and W =
[w1 w2 . . . wL]. Therefore, the MMV  model can be consid-
ered as L SMV  models with a common basis matrix ˚, and each xi
is the spectrum of the ith measurement yi.
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