
Biomedical Signal Processing and Control 35 (2017) 8–18

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journa l homepage: www.e lsev ier .com/ locate /bspc

An efficient and fast GPU-based algorithm for visualizing large
volume of 4D data from virtual heart simulations

Shui Yu a, Shanzhuo Zhang a, Kuanquan Wang a,∗, Yong Xia a, Henggui Zhang b

a Research Center of Perception and Computing, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
b School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

a r t i c l e i n f o

Article history:
Received 9 March 2016
Received in revised form 10 January 2017
Accepted 28 January 2017

Keywords:
Time-varying visualization
Vector quantization
Ray casting
Cardiac electrophysiology
Virtual heart

a b s t r a c t

An efficient and fast visualization algorithm is important for analyzing a large volume of physical data
conformed to 3D anatomical geometry that evolves with time (i.e., 4D data). Such 4D visualization helps
to study the evolution of cardiac excitation waves in normal and pathological conditions and understand
the mechanisms underlying the genesis and maintenance of cardiac arrhythmias. However, due to lim-
ited hardware resources, so far we have not found any report about real time methods to visualize a
large volume of 4D data of virtual heart simulation data. In this study, we propose a GPU-based method
to address this issue, our method consists of two phases, and the first is the data compression phase,
implementing an improved hierarchical vector quantization method with N-nearest neighbor searching
strategy in GPU, which reduces compression time dramatically. In the second phase, the compressed data
is directly decompressed in GPU and rendered with ray casting method. What is more, an adaptive sam-
pling strategy and empty space skipping methods are further used to accelerate the rendering process,
resulting in a high rendering speed. The proposed method has been evaluated for the visualization of
large time-varying cardiac electrophysiological simulation data by using our simulation datasets and has
achieved promising results. For about 27G bytes dataset, our method can render the data with above 35
frames per second (FPS), which exceeds the real-time frame rate for interactive observing. It significantly
decreases the time in the compression phase and achieves real time rendering speed with high image
quality in the visualization phase, which demonstrates the accuracy and efficiency of our method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Virtual physiological heart provides a powerful computational
platform to simulate and analyze the underlying mechanisms for
normal and abnormal cardiac electrical activities [1]. For example,
Multi-scale heart simulation and visualization methods have been
used to study pathological mechanisms of cardiac arrhythmias by
analyzing the evolution of re-entrant electrical excitation waves
in the heart [2]. In these studies, due to large volume of physi-
cal data in 3D space, which evolves with time (i.e., 4D data), it is
still a challenge to visualize dynamical cardiac excitation waves
with high quality in an efficient and interactive way. As the size
of the 4D data (such as heart data) may be up to dozens of giga-
bytes, it is hard to store them in the RAM or the video memory,

∗ Corresponding author.
E-mail addresses: yushi@hit.edu.cn (S. Yu), shanzhuo.zhang@gmail.com

(S. Zhang), wangkq@hit.edu.cn (K. Wang), xiayong@hit.edu.cn (Y. Xia),
h.zhang-3@manchester.ac.uk (H. Zhang).

data transmission between the RAM and the video memory is time
consuming, which makes it difficult for a rapid manipulation (i.e.,
“real-time”) of the visualization. Some out-of-core methods, such
as volume compression methods [3–6], can solve some of the stor-
ing and transferring problems, but most of these methods are still
time-consuming, which may take minutes or hours to complete
the tasks of compression. Furthermore, such compressed data can-
not be decompressed directly in graphics processing unit (GPU),
which seriously restricts rendering speed, so they need to make a
necessary trade-off between the image quality and the speed.

Visualization methods have been applied in heart models for
several years. A 3D human atrial model and the corresponding
visualization method were used by Colman et al. [7] to simulate
and analyze how re-entrant excitation waves degenerate into per-
sistent and erratic wavelets underlying atrial fibrillation. Aslanidi
et al. [8] used 2D and 3D models to investigate how the frequency,
wavelength, meandering pattern and stability of the re-entrant
spiral waves evolve with time in cardiac tissue. Their works pre-
sented insights into underlying possible mechanisms of cardiac
arrhythmias, but their 3D visualization results were presented only

http://dx.doi.org/10.1016/j.bspc.2017.01.015
1746-8094/© 2017 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.bspc.2017.01.015
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2017.01.015&domain=pdf
mailto:yushi@hit.edu.cn
mailto:shanzhuo.zhang@gmail.com
mailto:wangkq@hit.edu.cn
mailto:xiayong@hit.edu.cn
mailto:h.zhang-3@manchester.ac.uk
dx.doi.org/10.1016/j.bspc.2017.01.015

S. Yu et al. / Biomedical Signal Processing and Control 35 (2017) 8–18 9

as discrete snapshots of animation, which normally took a large
amount of computing time, limiting an efficient and interactive
visualization of simulations. To our best knowledge, among the
intense research of cardiac visualization methods, few of them
focused on the issue of 4D visualization problems. For example,
Wang et al. [9] presented a simplified LH histogram-based transfer
function design method to interactively visualize multi-boundary
and electrophysiology simulation data, but this method was based
on CPU, which cannot be implemented interactively with simula-
tion courses. Zhang et al. [10] provided a visualization method to
display dynamic 4D real-time MDCT images and later expanded the
system to 4D cardiac MRI and ultrasound images [11], but the data
size were relatively small as compared to the large volume data of
whole heart simulations.

With the great advance of graphic hardware technology, GPU-
based methods for data visualization have been proposed. Garcia
et al. [4] introduced a GPU-based algorithm for reconstructing 3D
wavelets using fragment programs and tile-boards to distribute the
3D wavelet coefficients. Wetekam et al. [12] used an FPGA decoder
to decompress wavelet coefficients based on Huffman variable bit
decoding; Villa et al. [13] proposed a hardware-accelerated pipeline
to resample the slice using 3D texture. Lamas-Rodriguez et al. [14]
presented a brick-based GPU-accelerated method in which bricks
were decompressed and rendered with a specific level of resolu-
tion depending on their distances to the eye point. The method
was a GPU implementation of Ihm and Park’s classic wavelet-based
rendering [15]. Transforming domain approaches stated above are
kind of pre-defined models [16], and are often computationally
economic, but the disadvantage of these approaches is that the
compressed data cannot be decompressed or rendered directly in
GPU because of the sophisticated decoding process, that is a large
waste of the strong computational capability of the hardware.

Vector quantization (VQ) is another strategy to compress vol-
ume data. The idea of VQ is to divide the space into small blocks
and then represent these blocks with a set of vectors named code-
words or dictionary. VQ was first introduced in volume rendering
by Paul et al. [17]. Schneider et al. [5] proposed a hierarchical VQ
method (HVQ) with three hierarchical levels and a dictionary of
1024 elements. The learning of the codebooks is performed through
a modification of the Linde–Buzo–Gray (LBG) algorithm [18]. Fout
et al. [19] combined HVQ with a previous domain transforma-
tion. Some methods based on sparse coding have been proposed in
recent years which can be seen as a generalization of VQ [20], Gob-
betti et al. [21] compactly described the small blocks of datasets
by sparse linear combinations of prototype blocks stored in an
over-complete dictionary, applying the concept of corset [22,23].
VQ-based methods are very popular in the papers of volume ren-
dering since the decompression is extremely fast and can be done
directly on GPU. However, a main problem of these methods is the
computationally expensive cost in pre-processing massive volumes
for obtaining a good codebook.

In recent years, tensor approximation (TA) has been applied
to interactively visualize large volume data, such as the hierar-
chical brick-tensor composition method and the tensor-specific
quantization strategy developed by Suter et al. [6,24]. However,
the reconstructive costs in GPU are very high and real time recon-
struction is feasible only for small blocks. Other methods treat the
4D data as a 3D video [25], which means combining the spatial
compression with time compression. For example, Jang et al. [26]
used the functional representative approach for time-varying data,
encoding the data by utilizing temporal similarities of the evolv-
ing datasets. Wang et al. [27] built a hierarchical structure for each
time step, then grouped and encoded space-corresponding nodes
together. This method is very easy to implement and each frame can
be encoded separately, but it cannot exploit the space coherence of
the data since the data is separated by time step.

In this paper, we present a solution to tackle the aforementioned
challenges, i.e., limited hardware resource to store the GB bytes of
volume data, time-consuming compression process, not real-time
visualization and poor image quality, for visualization of the 4D car-
diac electrophysiological simulation data in a dynamic style, so that
the data can be interpreted in an interactive way (for example users
can explore the 4D object from any viewing angles, and visualize
the inside volume by simply rotating or changing the opacity of
any parts of the target). The solution consists of two main aspects:
one is to compress the data rapidly and the other is to develop a
method to render the compressed data directly in GPU without loss
of image quality and rendering speed.

Specifically, in the compression phase, a N-nearest searching
method and a GPU-based compression architecture were proposed
to speed up the VQ and encoding processes. In the rendering phase,
some techniques were employed to accelerate the rendering pro-
cess. Firstly, we expanded the hierarchical data structure to skip
the empty blocks in the rendering stage. Secondly, an adaptive
sampling strategy was presented to find a valid block as fast as
possible, avoiding the redundant computations. Third, an advanced
feature, texture object in CUDA (Compute Unified Device Archi-
tecture, a parallel computing platform and programming model
which enables dramatic increases in computing performance by
harnessing the power of the GPU) [28], was employed to control
the rendering flow flexibly. We also tried to render the compressed
data with the ray casting method and tri-linear interpolation by
taking advantage of these methods.

2. Methods

2.1. Overview

For real-time rendering of time-varying volumetric data sets, it
is essential to implement a compressed representation of the data.
In fact, due to the bandwidth at various stages of the pipeline, it is
often not feasible to interactively load, decode and render data at
each time step in GPU in real time. To overcome this problem, we
propose a new method with architecture shown in Fig. 1. First, the
volume is decomposed into hierarchical structure, which consists
of two sets of vectors and values representing the information of all
sub-blocks. Second, the vector sets are quantized into a set of code-
books and indexed volumes, which are saved in hard disk. These
two steps are conducted offline.

At running time, compressed data, such as codebooks and
indexed volumes are loaded from hard disk to GPU memory, and
in turn are mapped as 2D or 3D textures. These textures are man-
aged as texture objects; texture object is an advanced feature in
CUDA. The main program running in CPU transfers the IDs of the
needed textures to CUDA kernel function, and the corresponding
codebooks and indexed volumes are selected to be used as the cur-
rent working sets. Codewords and mean values are then fetched
from the current working set through the coordinates needed in
the CUDA kernel function. After the process of ray casting, all the
results are written to frame buffer and then output by OPENGL as
images.

In the following sections, we will first introduce how to gener-
ate the simulation data from the model of virtual heart, and then
describe the novel methods we have used in a sequential manner.

2.2. Electrophysiological Simulation Data

The data used in this paper consist of two different parts. One
represents the anatomic structure of human ventricles, and the
other represents the electrophysiological simulation data of action
potentials through the human ventricles.

Download English Version:

https://daneshyari.com/en/article/4973579

Download Persian Version:

https://daneshyari.com/article/4973579

Daneshyari.com

https://daneshyari.com/en/article/4973579
https://daneshyari.com/article/4973579
https://daneshyari.com

