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a  b  s  t  r  a  c  t

The  high  dimensionality  and  noisy  spectra  of  Mass  Spectrometry  (MS)  data  are  two  of  the  main  challenges
to achieving  high  accuracy  recognition.  The  objective  of  this  work  is  to produce  an  accurate  prediction
of  class  content  by  employing  compressive  sensing  (CS).  Not  only  can  CS  significantly  reduce  MS data
dimensionality,  but  it will  also  allow  for full reconstruction  of  original  data.  We  are  proposing  a  weighted
mixing  of  L1-  and L2-norms  via  a regularization  term  as  a classifier  within  compressive  sensing  frame-
work. Using  performance  measures  such  as  OSR,  PPV,  NPV, Sen  and  Spec,  we  show  that  the  L2-algorithm
with  regularization  terms  outperforms  the  L1-algorithm  and Q5 under  all applicable  assumptions.  We
also aimed  to use  Block  Sparse  Bayesian  Learning  (BSBL)  to reconstruct  the  MS data  fingerprint  which
has  also  shown  better  performance  results  that  those  of  L1-norm.  These  techniques  were  successfully
applied  to MS  data  to  determine  patient  risk  of  prostate  cancer  by tracking  Prostate-specific  antigen  (PSA)
protein,  and  this  analysis  resulted  in better  performance  when  compared  to currently  used algorithms
such  as  L1  minimization.  This  proposed  work  will  be  particularly  useful  in  MS  data  reduction  for  assessing
disease  risk in patients  and  in future  personalized  medicine  applications.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Mass Spectrometry (MS) is often used to identify and quan-
tify protein peptides and has the potential to be clinically used
to differentiate between healthy and diseased patient samples.
It has gained significant importance over the past years and of
paramount challenge is the fact that MS  data comes with high
dimensionality. Being of such high dimensionality, MS  data clas-
sification is computationally complex. Data reduction algorithms
will be of critical importance in medicine going forward, having
extensive application in the areas of disease risk assessment and
personalized medicine. Major efforts are focused on improving
classification while reducing computation [1]. Many algorithms
have been proposed to classify MS  data. In some methods the clas-
sification utilizes the whole MS  data where all peak intensities are
considered. In other studies, [2,3], the linear discriminant analysis
(LDA) and continuous wavelet (CWT) space have been used for MS
classification. Furthermore, the Q5 algorithm has also been pro-
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posed for the probabilistic classification of a serum sample using
mass spectrometry [4]. They enforced a dimensionality reduction
via PCA, projecting the spectra-space into a lower dimension, where
the cross class variance is maximized. Then, LDA is applied to clas-
sify the projecting data. Other Partial features are candidates for
classification where some peaks or ranges of spectra, such as align-
ments or filters, are excluded during the preprocessing procedures.
Guyon et. al [5] propose a Recursive Feature Elimination (SVM-
RFE) algorithm that selects important genes/biomarkers for the
classification of noisy data. The sparse proteomics analysis (SPA)
is another way  to complete feature selection based on the com-
pressive sensing concept [6]. Sparse features are a small subset of
features that can be used to accurately predict unknown proteomic
data. Huang et. al propose sparse signal representation to be used
for classification among multiple linear regressions [7]. In using this
method, the test sample is linearly represented of all training sam-
ples. Coefficients entries are all zeros except for those associated
with a particular class or category.

In this paper, we  used regularization of least squares with L1 and
L2-norm methods to recover and classify within data sparse rep-
resentation. Furthermore, we verified our proposed method using
a prostate cancer database. Finally, accuracy and precision of our
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results were compared to those using the L2-norm method or the
Q5 method.

2. Material and methods

2.1. Compressive sensing framework

In compressive sensing, most efforts target an optimum solution
for the linear system equation

y = �x (1)

where x ∈ R
N is a sparse signal, � ∈ R

dxN is the measurement or
sensing matrix, y ∈ R

d is a measurement vector, and d is the num-
ber of measurements retained from the original length N. Choosing
d � N immediately gives a compressed measurement vector y of
length d instead of N. The � rows are incoherent and the columns
are linearly independent [8]. The encoding phase is non-adaptive
and does not need analysis in order to find the final encoding.
Retained measurements d should always satisfy:

d � Coklog(N) (2)

where C0 is a constant and is the k number of non-zero entries in
x. Therefore, CS is based on the assumption of a severely undersam-
pled signal but reconstruction is secured using methods of convex
optimization [9], as given in Eq. (3).

min ||x| |1 subject to �x = y (3)

2.2. CS-based MS  classification

MS  data has very high dimensionality and the classification pro-
cess is computationally expensive. A main objective of this study
is to propose an accurate MS  data classifier while reducing dimen-
sionality. By modeling the MS  data using CS technique, the sensing
data does not only include lower dimensionality than the original
data, but also the original information is preserved. This will allow
us to go through the classification process with lower data dimen-
sionality, leading to faster processes without losing classification
accuracy. We  are particularly focused on producing optimal and
robust solutions from MS  data where the following assumptions
are considered:

1. The MS  data is noisy
2. The collected data (MS  sample) is of a high dimension [typically

105 to 108].
3. The number of samples in the database is relatively small [typi-

cally 102 to 104].

Each sample is represented by a vector pair
{
m⁄z, I

}
∈ R

Nwhere

m/z is the mass to charge ratio xi =
{
Ii,1, Ii,2, . . ..  . .Ii,ni

}
∈ R

Nxniand

I is the spectral intensity. Then we stack ni columns of ith class as
xi =

[
Ii,1, Ii,2, . . ..  . ..Ii,ni

]
∈ R

Nxni. Then the training set containing
the n samples belonging to K classes can be represented as X =

[x1, x2, . . ..  . ..xK ] ∈ R
Nxn, thus n =

K∑
i=1

ni. In sparse representation,

any test sample, x ∈ R
N, can be represented as a linear combination

of the entire training samples [10].

x = Xr, x ∈ R
N (4)

where r ∈ R
n represents the coefficient vector that needs to be esti-

mated. When N < n, the system is an underdetermined and would
have an infinite number of solutions leading to a non-unique r.
While the sparsest solution can be found using L1 norm, others
chose to use nonlinear methods to find the nearest solution, such as

convex optimization [8] and Newton methods [11]. It is proposed
to reduce original high dimensionality of the data much using a
sensing matrix and taking advantage of CS framework as also uti-
lized by Liu et. al [12]. Instead of dealing with the X matrix, our MS
data set, a new sensing data is generated by

y = �x = �Xr = Yr (5)

where Y = [y1, y2, . . ..yK ] ∈ Rdxn and � ∈ R
dxn is the transfor-

mation matrix
(
R
N → R

d
)

. In general, d has to be much smaller than
N, to satisfy the underdetermined condition. Due to high dimen-
sionality of MS  features and especially in comparison with the
number database samples, we still have an overdetermined sys-
tem. In contrast to the other study and their proposed solution via
L1 [12], it is possible for us to estimate r using L2 norm by solving:

argmin
r ∈ Rn

‖y − Yr ‖2
2 (6)

However, to overcome the limitation of L1 and L2 overfitting,
the regularized regression method that linearly combines the L1
and L2 penalties has been suggested by Zou et. al [13]. Therefore,
Eq. (6) is replaced with Eq. (7) in our solution:

argmin‖y − Yr‖2
2 + �1‖r‖1 + �2‖r‖2

2 (7)

where the term �1r1 + �2r2
2 is known as the Elastic net penalty,

and both of the trade-off parameters �1 and�2 ≥ 0. Both represent
the compromise between model complexity and results accuracy.
Eq. (7) is equivalent to the optimization problem:

argmin
r

∣∣|y − Yr
∣∣ |2

2
s. t �1||r| |1 + �2||r| |22 (8)

Once r coefficients are estimated, the identity of test sample y
can be determined based on how well the coefficients from each
category are assigned to the object by calculating the residuals
between the sensing test sample and all categories. The class is
assigned based on minimum residual as:

min
i
ri(y) = ‖y − Yiıri‖2i = 1, 2, . . ..K (9)

where ıri is the regularization subvector coefficient of class i
with dimension ni consisting of components of r and Yi is a dxni
submatrix of Y , both corresponding to the class i samples [14]. The
procedure for this proposed work is shown in Fig. 1.

3. MS  recovery using CS framework

Although MS  data is not naturally sparse, the difference between
any two samples can be assumed as relatively sparse [12]. In Fig. 2,
we show two  diseased samples (D1 and D2) along with a healthy
sample (C1) all taken from prostate cancer MS  dataset for track-
ing PSA. This database is routinely used in assessment of patient
prostate cancer risk [15]. We  also show the difference between
samples from patients with prostate cancer (D1- D2) is a sparse sig-
nal while the difference between the samples from healthy patients
and patients with prostate cancer (C1-D2) is much less sparse. Con-
sequently, we  can use sparsity for reconstruction of the sample to
its original size if needed, such as when abnormalities necessitate
further analysis of original data.

Using regulated L2 classification results to identify the nearest
sample y� to a test sample yt, we  can create the fingerprint signal
as:

yt = �xt + ε&y∗ = �x∗ + ε (10)

yFP = yt − y� = � (xt − x∗) + ε = �xFP + ε (11)

where yFP ∈ R
M is the measurements vector which has been

taken from the original signal fingerprint xFP (that is D1- D2). xFP
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