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TaggedPAbstract

Acoustic beamforming can greatly improve the performance of Automatic Speech Recognition(ASR) and speech enhance-

ment systems when multiple channels are available. We recently proposed a way to support the model-based Generalized Eigen-

value beamforming operation with a powerful neural network for spectral mask estimation. The enhancement system has a

number of desirable properties. In particular, neither assumptions need to be made about the nature of the acoustic transfer func-

tion (e.g., being anechonic), nor does the array configuration need to be known. While the system has been originally developed

to enhance speech in noisy environments, we show in this article that it is also effective in suppressing reverberation, thus leading

to a generic trainable multi-channel speech enhancement system for robust speech processing. To support this claim, we consider

two distinct datasets: The CHiME 3challenge, which features challenging real-world noise distortions, and the REVERBchallenge,

which focuses on distortions caused by reverberation. We evaluate the system both with respect to a speech enhancement and a

recognition task. For the first task we propose a new way to cope with the distortions introduced by the Generalized Eigenvalue

beamformer by renormalizing the target energy for each frequency bin, and measure its effectiveness in terms of the PESQ score.

For the latter we feed the enhanced signal to a strong DNN back-end and achieve state-of-the-art ASR results on both datasets.

We further experiment with different network architectures for spectral mask estimation: One small feed-forward network with

only one hidden layer, one Convolutional Neural Network and one bi-directional Long Short-Term Memory network, showing

that even a small network is capable of delivering significant performance improvements.

� 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

TaggedPAcoustic beamforming has been considered as a front-end processing technique for Automatic Speech Recogni-

tion (ASR) for many years. As early as 1990 Compernolle et al. showed that significant word error rate (WER)

improvements are achievable by acoustic beamforming (Compernolle et al., 1990). Research on acoustic beamform-

ing has made great progress since then, including the use of novel objective functions, such as the multi-channel

Wiener filter, and the consideration of arbitrary Acoustic Transfer Functions (ATFs) from the speech source to the
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TaggedPmicrophones, thus giving up the assumption of an anechoic delay-only propagation path, see, e.g., Gannot and

Habets (2013) for a tutorial.

TaggedPWhile these modern beamforming concepts have been employed for speech communication tasks, their use as a

front-end in ASR was rather limited. Further, with the recent success of ASR back-ends relying on Deep Neural Net-

works (DNNs), the front-end acoustic beamforming needs reconsideration.

TaggedPAn obvious approach to handle multi-channel signals is to first employ a conventional beamforming approach to

condense the multiple signals into one signal which is then fed into a Deep Neural Network (DNN) back-end. Del-

croix et al. have shown that a strong DNN back-end can be significantly improved with a sophisticated beamformer

based on the Minimum Variance Distortionless Response (MVDR) criterion (Delcroix et al., 2014).

TaggedPWhile this work showed the effectiveness of acoustic beamforming in a DNN-based ASR system, only few multi-

channel approaches exist which directly employ DNNs. Swietojanski et al. employed the logarithmic Mel filterbank

features of multiple acoustic channels as a parallel input to a CNN. They explored different weight sharing

approaches and found that channel-wise convolution followed by a cross-channel max-pooling performed better than

multi-channel convolution (Swietojanski et al., 2014). This approach, however, has the intrinsic drawback that the

information on the relative phases between the channels is lost, since current feature extraction methods are agnostic

to the phase. On the other hand it is well-known that in geometrically compact microphone array configurations the

main difference between the signals of the individual channels reside in their phases, not in their magnitudes.

TaggedPAn alternative approach to make use of multiple input channels for ASR is to leverage temporal difference infor-

mation between channels by directly working on the raw waveform, i.e., feeding the time domain signals into the

DNN. Hoshen et al. reported noticeable performance gains over single-channel input (Hoshen et al., 2015). Follow-

ing works are even able to achieve better results than a MVDR beamformer (Sainath et al., 2015; 2016).

TaggedPOthers proposed to jointly train a MVDR beamformer and the acoustic model (Xiao et al., 2016). Thereby, they

use a DNN to estimate the beamforming weights for the MVDR beamformer given the Time Differences of Arrival

(TDOA), perform the beamforming operation, extract the features and finally use these features to train an acoustic

model. During this training, they are able to backpropagate the cross-entropy error down to the network estimating

the beamforming weights.

TaggedPIn this paper we adhere to the conventional approach of first condensing multiple input channels to a single

enhanced output signal to be fed to the ASR back-end. However, we still make use of the recent progress in DNNs

by employing a neural network component in the estimation of the beamformer coefficients. We consider the acous-

tic beamformer to be a multiple-input single-output (MISO) linear time-invariant filter. A key concern is how to esti-

mate the filter coefficients to extract the target signal while suppressing interferences, exploiting the different spatial

and spectral properties of the target and the distortions. For the Delay-and-Sum Beamformer (DSB), the filter coeffi-

cients can be derived from an estimate of the Direction-of-Arrival (DoA), if the geometry of the microphone array is

known. Note that the assumption underlying the DSB is that of an anechoic acoustic environment. If reverberation is

to be accounted for, the (relative) ATFs between source and sensors are estimated, which usually requires an estima-

tion of the statistics of the target speech signal (Gannot et al., 2001). Further, advanced beamforming concepts also

require an estimate of the Cross-Power Spectral Density (PSD) matrix of the noise signal.

TaggedPThese statistics can be obtained by estimating spectral masks for speech and noise which are typically obtained by

model-based methods, i.e. Sawada, Araki, Makino, (2011), Ito et al. (2014), Vu and Haeb-Umbach (2010), Ito et al.

(2013), Yoshioka et al. (2015), Araki and Nakatani (2011), Araki et al. (2016). Instead of using a model-based

approach, we recently proposed to use a DNN to estimate those masks. A distinctive advantage of the proposed neu-

ral network based mask estimation is that we explicitly account for time and frequency dependencies during mask

estimation whereas most model-based approaches treat individual frequencies independently. This improves the

accuracy of the estimated signal statistics and hence the overall results (Heymann et al., 2016). Additionally, making

no assumptions about the distribution of the data for masking but rather inferring it from the training data, we expect

this approach to be more robust against different noise types and reverberation. Further, by carrying out mask esti-

mation for each channel separately and relying on microphone array independent signal statistics renders the trained

neural network parameters independent of the microphone array configuration. Thus our approach can be applied to

arbitrary array configurations. We can even cope with array configurations at test time, which are different from

those at training time but still employ a powerful DNN in the multi-channel processing pipeline.

TaggedPDNNs for mask estimation have been used in single channels speech enhancement for a while (e.g. Narayanan

and Wang, 2013) and even extended to include the phase (Williamson et al., 2016). Although similar, the overall
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