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In this work we present a deep learning framework for video compressive sensing. The proposed 
formulation enables recovery of video frames in a few seconds at significantly improved reconstruction 
quality compared to previous approaches. Our investigation starts by learning a linear mapping between 
video sequences and corresponding measured frames which turns out to provide promising results. We 
then extend the linear formulation to deep fully-connected networks and explore the performance gains 
using deeper architectures. Our analysis is always driven by the applicability of the proposed framework 
on existing compressive video architectures. Extensive simulations on several video sequences document 
the superiority of our approach both quantitatively and qualitatively. Finally, our analysis offers insights 
into understanding how dataset sizes and number of layers affect reconstruction performance while 
raising a few points for future investigation.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The subdivision of time by motion picture cameras, the frame 
rate, limits the temporal resolution of a camera system. Even 
though frame rate increase above 30 Hz may be imperceptible to 
human eyes, high speed motion picture capture has long been a 
goal in scientific imaging and cinematography communities. De-
spite the increasing availability of high speed cameras through the 
reduction of hardware prices, fundamental restrictions still limit 
the maximum achievable frame rates.

Video compressive sensing (CS) aims at increasing the tempo-
ral resolution of a sensor by incorporating additional hardware 
components to the camera architecture and employing power-
ful computational techniques for high speed video reconstruction. 
The additional components operate at higher frame rates than 
the camera’s native temporal resolution giving rise to low frame 
rate multiplexed measurements which can later be decoded to ex-
tract the unknown observed high speed video sequence. Despite 
its use for high speed motion capture [1], video CS also has ap-
plications to coherent imaging (e.g., holography) for tracking high-
speed events [2] (e.g., particle tracking, observing moving biologi-
cal samples). The benefits of video CS are even more pronounced 
for non-visible light applications where high speed cameras are 
rarely available or prohibitively expensive (e.g., millimeter-wave 
imaging, infrared imaging) [3,4].
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Video CS comes in two incarnations, namely, spatial CS and 
temporal CS. Spatial video CS architectures stem from the well-
known single-pixel-camera [5], which performs spatial multiplex-
ing per measurement, and enable video recovery by expediting the 
capturing process. They either employ fast readout circuitry to cap-
ture information at video rates [6] or parallelize the single-pixel 
architecture using multiple sensors, each one responsible for sam-
pling a separate spatial area of the scene [4,7].

In this work, we focus on temporal CS where multiplexing oc-
curs across the time dimension. Fig. 1 depicts this process, where 
a spatio-temporal volume of size W f × H f × t = N f is modulated 
by t binary random masks during the exposure time of a single 
capture, giving rise to a coded frame of size W f × H f = M f .

We denote the vectorized versions of the unknown signal and 
the captured frame as x : N f × 1 and y : M f × 1, respectively. Each 
vectorized sampling mask is expressed as φ1, . . . , φt giving rise to 
the measurement model

y = �x, (1)

where � = [diag(φ1), . . . ,diag(φt)] : M f × N f and diag(·) creates 
a diagonal matrix from its vector argument.

Various successful temporal CS architectures have been pro-
posed. Their differences mainly involve the implementation of the 
random masks on the optical path (i.e., the measurement matrix 
in Fig. 1). Digital micromirror devices (DMD), spatial light modu-
lators (SLM) and liquid crystal on silicon (LCoS) were used in [4,
7–10] while translating printed masks were employed in [11,12]. 
Moreover, a few architectures have eliminated additional optical el-
ements by directly programming the chip’s readout mode through 
hardware circuitry modifications [13–15].
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Fig. 1. Temporal compressive sensing measurement model.

Despite their reasonable performance, temporal CS architectures 
lack practicality. The main drawback is that existing reconstruction 
algorithms (e.g., using sparsity models [4,16], combining sparsity 
and dictionary learning [9] or using Gaussian mixture models [17,
18]) are often too computationally intensive, rendering the recon-
struction process painfully slow. Even with parallel processing, re-
covery times make video CS prohibitive for modern commercial 
camera architectures.

In this work, we address this problem by employing deep learn-
ing and show that video frames can be recovered in a few seconds 
at significantly improved reconstruction quality compared to exist-
ing approaches.

Our contributions are summarized as follows:

1. We present the first deep learning architecture for temporal 
video CS reconstruction approach, based on fully-connected 
neural networks, which learns to map directly temporal CS 
measurements to video frames. For such task to be practical, a 
measurement mask with a repeated pattern is proposed.

2. We show that a simple linear regression-based approach 
learns to reconstruct video frames adequately at a minimal 
computational cost. Such reconstruction could be used as an 
initial point to other video CS algorithms.

3. The learning parading is extended to deeper architectures 
exhibiting reconstruction quality and computational cost im-
provements compared to previous methods.

2. Motivation and related work

Deep learning [19] is a burgeoning research field which has 
demonstrated state-of-the-art performance in a multitude of ma-
chine learning and computer vision tasks, such as image recogni-
tion [20] or object detection [21].

In simple words, deep learning tries to mimic the human brain 
by training large multi-layer neural networks with vast amounts 
of training samples, describing a given task. Such networks have 
proven very successful in problems where analytical modeling is 
not easy or straightforward (e.g., a variety of computer vision 
tasks [22,23]).

The popularity of neural networks in recent years has led re-
searchers to explore the capabilities of deep architectures even in 
problems where analytical models often exist and are well un-
derstood (e.g., restoration problems [24–26]). Even though per-
formance improvement is not as pronounced as in classification 
problems, many proposed architectures have achieved state-of-the-
art performance in problems such as deconvolution, denoising, in-
painting, and super-resolution.

More specifically, investigators have employed a variety of ar-
chitectures: deep fully-connected networks or multi-layer percep-
trons (MLPs) [24,25]; stacked denoising auto-encoders (SDAEs) 
[26–29], which are MLPs whose layers are pre-trained to pro-
vide improved weight initialization; convolutional neural networks 
(CNNs) [7,30–34] and recurrent neural networks (RNNs) [35].

Based on such success in restoration problems, we wanted to 
explore the capabilities of deep learning for the video CS problem. 

Fig. 2. Average reconstruction performance of linear mapping for 14 videos (unre-
lated to the training data), using measurement matrices �p with varying percent-
ages of nonzero elements.

However, the majority of existing architectures involve outputs 
whose dimensionality is smaller than the input (e.g., classification) 
or have the same size (e.g., denoising/deblurring). Hence, devis-
ing an architecture that estimates N f unknowns, given M f inputs, 
where M f � N f is not necessarily straightforward.

Two recent studies, utilizing SDAEs [36] or CNNs [37], have 
been presented on spatial CS for still images exhibiting promising 
performance. Our work constitutes the first attempt to apply deep 
learning on temporal video CS. Our approach differs from prior 2D 
image restoration architectures [24,25] since we are recovering a 
3D volume from 2D measurements.

3. Deep networks for compressed video

3.1. Linear mapping

We started our investigation by posing the question: can train-
ing data be used to find a linear mapping W such that x = W y? 
Essentially, this question asks for the inverse of � in equation (1)
which, of course, does not exist. Clearly, such a matrix would be 
huge to store but, instead, one can apply the same logic on video 
blocks [9].

We collect a set of training video blocks denoted by xi , i ∈ N

of size w p × hp × t = Np . Therefore, the measurement model per 
block is now yi = �pxi with size Mp ×1, where Mp = w p ×hp and 
�p refers to the corresponding measurement matrix per block.

Collecting a set of N video blocks, we obtain the matrix equa-
tion

Y = �p X, (2)

where Y = [y1, . . . ,yN ], X = [x1, . . . ,xN ] and �p is the same for 
all blocks. The linear mapping X = W p Y we are after can be cal-
culated as

min
W p

∥∥X − W p Y
∥∥2

2 → W p =
(

XY T
)(

Y Y T
)−1

, (3)

where W p is of size Np × Mp .
Intuitively, such an approach would not necessarily be expected 

to even provide a solution due to ill-posedness. However, it turns 
out that, if N is sufficiently large and the matrix �p has at least 
one nonzero in each row (i.e., sampling each spatial location at 
least once over time), the estimation of xi ’s by the yi ’s provides 
surprisingly good performance.

Specifically, we obtain measurements from a test video se-
quence applying the same �p per video block and then recon-
struct all blocks using the learnt W p . Fig. 2 depicts the average 
peak signal-to-noise ratio (PSNR) and structural similarity metric 
(SSIM) [38] for the reconstruction of 14 video sequences using 2 
different realizations of the random binary matrix �p for varying 
percentages of nonzero elements. The empty bars for 10–20% and 
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