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In financial applications, it is common practice to fit return series by AutoRegressive Moving-Average 
(ARMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. In this 
paper, we develop a complex-valued ARMA-GARCH model for the sea clutter modeling application. 
Compared with the AR-GARCH model, the additionally introduced MA terms make the proposed model 
capable of considering the dependence of conditional variances of adjacent echo measurements as model 
coefficients, improving the modeling precision by taking advantage of the strong correlations between 
adjacent measurements. Based on the complex-valued ARMA-GARCH process for sea clutter modeling, 
we further develop a sea surface target detection algorithm. By analyzing a large number of the practical 
sea clutter data, we evaluate its performance and show that the proposed sea surface target detector 
offers a noticeable improvement for the probability of detection, comparing with the state-of-the-art 
AR-GARCH detector.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Accurate modeling of sea clutter is of great importance in re-
mote sensing and radar applications, and it benefits optimum 
detection algorithm design and performance prediction [1–9]. To 
comprehensively investigate the statistical characteristics of prac-
tical clutter under different environmental conditions, a variety of 
experiments have been carried out, and the databases are available 
to the international research community, e.g., the McMaster Intel-
ligent PIXel Processing Radar (IPIX) database [10] and the Coun-
cil for Scientific and Industrial Research (CSIR) database [11]. At 
times, however, the data necessary for the statistical description 
of the amplitude and the power of clutter are either not avail-
able or scarce for various sea states, grazing angles, polarizations 
and wind directions. Alternatively, the computer simulation pro-
gram provides an inexpensive and reliable environment to obtain 
the synthetic clutter data at various frequency bands [12,13].

For low grazing angles, sea clutter is generally characterized by 
Weibull [14], K [15], log-normal [16], Pareto [17], and Compound-
Gaussian (CG) [18] Probability Density Functions (PDFs), etc. It is 
noted that the Pareto distribution is also a good model for high 
grazing angle sea clutter [19]. Traditional statistics-based detection 
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methods, however, cannot obtain the expected results when the 
model of sea clutter and target does not fit the practical compli-
cated environment [20]. Moreover, these traditional distributions 
cannot precisely model the possible temporal dependencies in the 
return series.

The CG process can be expressed as a product model [18]

ct = √
τt gt (1)

where the fast-changing component gt , which accounts for local 
scattering, is referred to as speckle. The nonnegative real stochastic 
variable τt , which represents the variation of the local power of the 
clutter due to the tilting of the illuminated area, is referred to as 
texture. The product model describes the scattering mechanism for 
observation time intervals on the order of the Coherent Processing 
Interval (CPI) of the radar system [21]. Therefore, the CG model is 
widely used to characterize the heavy-tailed clutter distributions in 
radar applications, especially sea clutter modeling [22]. The texture 
of the CG process, which controls the variance of the compound 
process, is commonly assumed to follow certain distribution, e.g., 
Gamma [23], inverse Gamma [23,24], and inverse Gaussian [25]. 
However, in practice, it is difficult to determine which texture dis-
tribution is optimal.

The introduction of Generalized AutoregRessive Conditional 
Heteroscedastic (GARCH) processes [26] for sea clutter modeling 
[27] provides a novel method to model the amplitude of clutter 
echo as a time series. Here, the term “heteroscedastic” means that 
the variance is not constant but time-varying. In [28], the authors 
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propose a complex nonlinear ARCH model and the corresponding 
detector, which achieves higher probability of detection, compar-
ing with the linear GARCH detector. Both linear and nonlinear 
GARCH-type processes, however, cannot consider the strong cor-
relations between adjacent clutter returns. Therefore, in order to 
have a quantitative idea, it is necessary to first estimate the data 
autocorrelation functions by means of the average of their tempo-
ral autocorrelation functions [27]. Subsequently, according to the 
estimated autocorrelation functions, one can predict that samples 
from two pulses separated a certain interval are not correlated. For 
instance, if after six pulses, the autocorrelation function is approx-
imately zero, then we extract one sample from six successive sam-
ples. This data extraction method is apparently inefficient, since 
most of the radar resources are wasted. Hence, a family of GARCH-
type processes have been investigated for sea clutter modeling and 
a generalized nonlinear-asymmetric GARCH model, combining with 
the AutoRegressive (AR) process, is proposed in [29]. Due to the 
introduction of AR process, the interval of extraction can be mod-
erately reduced.

It is worth noting that the GARCH process is also a product 
model, as observed in the next section. Therefore, it naturally in-
herits the advantages of the CG model. The main difference be-
tween GARCH and CG processes is that the conditional variances 
of GARCH processes are time-varying and dependent on historic 
information. Two primary features of the GARCH process are lep-
tokurticity and volatility clustering (i.e., large changes tend to fol-
low large changes and small changes tend to follow small ones), 
which are exactly shown in sea clutter measurements. The his-
tory information is used to improve the model characterization 
at current time and future predictions. While the correlations be-
tween adjacent clutter measurements are strong, samples from 
two pulses separated by a time interval become uncorrelated. It 
means that when using a GARCH process (or a nonlinear GARCH 
process) for clutter modeling, it is necessary to first analyze the 
autocorrelation function of clutter to determine the proper time in-
terval. Apparently, this method is inefficient or even not available 
when the radar dwell time is relatively short, leading to insuffi-
cient data length for precise parameter estimation.

Subsequently, Pascual et al. [30] propose a complex Two-
Dimensional AutoRegressive GARCH (AR-GARCH-2D) process for 
sea clutter modeling. By introducing AR terms, the correlations of 
adjacent measurements are modeled as coefficients of the condi-
tional mean. However, not only the clutter measurements but also 
their conditional variances are dependent, because the conditional 
variance is composed of past information including clutter mea-
surements. Therefore, it is natural and reasonable to add Moving 
Average (MA) terms in conditional mean expression of the model 
to obtain more precise modeling of practical sea clutter. The new 
clutter model comes with two advantages: 1) data extraction is no 
longer necessary and the required radar dwell time can be greatly 
reduced; 2) the conditional mean of practical clutter is more pre-
cisely modeled, resulting in smaller conditional variances, which is 
closely related to the decision threshold of the detector, as shown 
in Section 4.3.1.

In this paper, by using practical sea clutter data, we demon-
strate that the proposed ARMA-GARCH detector offers a noticeable 
improvement for the probability of detection, comparing with the 
AR-GARCH detector. It is worth mentioning that we mainly dis-
cuss the 1-D situation to expound the advantages of adding MA 
terms in the conditional mean expression. In other words, the 
pulse dimension (slow time dimension) clutter is modeled as a 
complex ARMA-GARCH process. In fact, the ARMA-GARCH process 
and the corresponding detection algorithm can be conveniently 
extended to the 2-D case by incorporating range dimension (fast 
time dimension) measurements and conditional variances of range 
dimension in the current conditional variance expression. Mean-

while, however, the required data size for parameter estimation 
increases. Moreover, the range resolution of the radar data used 
in this paper is 30 m, which leads to negligible coefficients of the 
range dimension. As a result, the 2-D and 1-D processes, as well 
as the corresponding detectors, are essentially the same. This view-
point is demonstrated by numerical simulations in Section 4. It is 
inferred that with the improvement of radar resolution, the 2-D 
detector may achieve better performance.

The rest of this paper is organized as follows. Section 2 briefly 
introduces the complex 1-D and 2-D ARMA-GARCH processes, as 
well as the parameter estimation algorithm and model order selec-
tion criteria. Based on the 1-D model for the sea clutter, a binary 
hypothesis test detection algorithm is developed in Section 3. In 
Section 4, numerical simulations are conducted to validate the ad-
vantages of the proposed detector.

2. Novel clutter model based on complex ARMA-GARCH process

2.1. A novel clutter model

In the new clutter model, we model sea clutter measurements 
as a complex ARMA(p, q)-GARCH(m, n) process ct , defined by the 
following

ϕ(B)ct = ψ(B)εt (2)

εt =
√

htηt (3)

ht = α0 +
m∑

i=1

αi|εt−i |2 +
n∑

i=1

βiht−i, (4)

where ϕ(B) = 1 − ϕ1 B − · · · − ϕp B p and ψ(B) = 1 + ψ1 B + · · · +
ψq Bq are polynomials of B with no common factors; B is the 
backward-shift operator, e.g., B p yt = yt−p ; positive integers p, q, 
m, n are model orders; and ηt is a sequence of i.i.d. circular nor-
mal stochastic variables, i.e., ηt ∼ CN (0, 1); α0 > 0, αi ≥ 0, βi ≥ 0
are coefficients of conditional variance ht , while the restrictions 
on them guarantee the positivity of ht . The unconditional vari-
ance of the GARCH part is finite if 

∑m
i=1 αi + ∑n

i=1 βi < 1 [26]. 
Moreover, suppose that all roots of ϕ(B) = 0 and ψ(B) = 0 lie out-
side the unit circle, then ct is strictly stationary and ergodic [31]. 
Also note that {ϕi}p

i=1 and {ψi}q
i=1 are complex coefficients of the 

model.
The in-phase and quadrature components of the received radar 

echoes respectively correspond to the real and imaginary part of 
c(t). From (2)–(4), it is seen that comparing with the AR-GARCH 
process, not only the past measurements {yt−i}p

i=1 but also the 
past conditional variances {ht−i}q

i=1 are incorporated in the echo 
model, resulting in more accurate modeling precision of the cur-
rent conditional variance, which is essential for the detection per-
formance.

Let Ft denote the sigma-field generated by the past informa-
tion, i.e., hτ , cτ and ετ for τ < t . Then, if we condition ct to Ft

from (2), we see that ct−i , εt−i , i = 1, 2, . . . are given and only εt

is random; thus

ct |Ft ∼ CN
( p∑

i=1

ϕict−i +
q∑

i=1

ψiεt−i,ht

)
. (5)

Incorporating the range dimension measurements and condi-
tional variances of the range dimension in (4), we obtain condi-
tional variance expression of the 2-D ARMA-GARCH model

hrt = α0 +
∑

i, j∈	1

αi j|εr−i,t− j|2 +
∑

i, j∈	2

βi jhr−i,t− j, (6)
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