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The classical proportionate adaptive filtering (PAF) algorithms achieve a fast initial convergence for sparse 
impulse response. But the small coefficients receive very little gain so that the time needed to reach 
steady-state misalignment is increased. In addition, the PAF algorithms converge much slower than the 
original adaptive filtering (OAF) algorithms when the impulse response is dispersive. In order to address 
these problems, this paper proposes a family of gain-combined PAF (GC-PAF) algorithms. The gain-
combined matrix of the proposed GC-PAF algorithms is implemented by using a sigmoidal activation 
function to adaptively combine the proportionate matrix and identity matrix, which can retain the 
advantages of both the PAF algorithms in the context of sparse impulse response and the OAF algorithms 
in the context of dispersive impulse response. Meanwhile, to be also applicable to the family of sign 
algorithms against impulsive noise, a general framework for the update of the sigmoidal activation 
function is obtained by using the gradient descent method to minimize the L1-norm of the system output 
error. Simulations in the contexts of three different sparsity impulse responses have shown that the 
proposed GC-PAF algorithms perform much better than the OAF, PAF and improved PAF (IPAF) algorithms.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The least-mean-square (LMS) and normalized LMS (NLMS) al-
gorithms are the most popular adaptive filtering algorithms owing 
to their low computational complexity and ease of implementa-
tion [1]. However, the LMS- and NLMS-type algorithms often fail 
in terms of the convergence rate for the wide range of applications 
such as acoustic echo cancellation (AEC), network echo cancellation 
(NEC), room impulse response (RIR) identification, as well as rel-
ative transfer function (RTF) identification. The impulse responses 
of most of these applications are sparse in nature. Thus, sparsity 
property has long been investigated to improve the performance of 
the LMS and NLMS algorithms, such as the smoothed l0-norm LMS 
(SL0-LMS) [2], non-uniform norm constraint LMS (NNCLMS) [3], 
and proportionate NLMS (PNLMS) [4] algorithms. Representatively, 
the PNLMS algorithm adjusts the adaptation gain in proportion to 
the estimated filter coefficient. But, it is difficult to a priori know 
the sparseness of the impulse response in real-world scenarios. 
Over the past nearly two decades, many variants of PNLMS al-
gorithm have been proposed in the literatures [5–24]. A general 
framework for the proportionate-type NLMS algorithms is pro-
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posed in [22–24]. Some new proportionate NLMS algorithms can 
be derived following this framework.

The PNLMS algorithm was directly extended to the affine pro-
jection algorithm (APA) [25] and affine projection sign algorithm 
(APSA) [26] and thus yields the proportionate APA (PAPA) [14]
and real-coefficient proportionate APSA (RP-APSA) [21], respec-
tively. In [22] and [23], a general framework for the proportionate-
type APA algorithms is derived. The proportionate adaptive filtering 
(PAF) algorithms including the PNLMS, adaptive segmented PNLMS 
(ASPNLMS) [22], PAPA and RP-APSA achieve a fast initial conver-
gence rate in sparse impulse response. But the small coefficients 
receive very little gain so that the time needed to reach steady-
state misalignment is increased. In addition, the PAF algorithms 
converge much slower than the original adaptive filtering (OAF) al-
gorithms including the NLMS, APA and APSA when the impulse 
response is dispersive. Thus, the improved PAF (IPAF) algorithms 
including the improved PNLMS (IPNLMS) [6], variable parameter 
IPNLMS (VP-IPNLMS) [12], improved PAPA (IPAPA) [16] and real-
coefficient improved proportionate APSA (RIP-APSA) [21] have been 
developed to address these problems. In addition, a family of 
block-sparse proportionate algorithms has also been proposed in 
[27–29] to address these problems above, which is obtained by 
optimizing a mixed L2,1 norm of the weight coefficients of the 
adaptive filter. Today, it still is one of the most active topics in 
adaptive filtering to further investigate these issues. Inspired by 
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[30], this paper proposes a family of gain-combined PAF (GC-PAF) 
algorithms, which refer to the GC-PNLMS algorithm, GC-PAPA and 
GC-PAPSA.

The gain-combined matrix of the proposed GC-PAF algorithms 
is implemented by using a sigmoidal activation function to adap-
tively combine the proportionate matrix and identity matrix, 
which can retain the advantages of both the PAF algorithms in 
the context of sparse impulse response and the OAF algorithms in 
the context of dispersive impulse response. Meanwhile, to obtain a 
general framework, the sigmoidal activation function is indirectly 
updated by minimizing the L1-norm of the system output error, 
i.e., the algorithms should be robust against impulsive noise when 
this framework is applied to the family of sign algorithms. Benefit-
ing from this combination approach, the small coefficients receive 
more gain and as a result the proposed algorithms to reach steady-
state misalignment are faster. The performance of the proposed 
GC-PAF algorithms is tested in the context of three different spar-
sity impulse responses. Simulation results show that the proposed 
GC-PAF algorithms perform better than the OAF, PAF and IPAF al-
gorithms.

The organization of this paper is as follows. The classical PNLMS 
algorithm is reviewed in Sec. 2. In Sec. 3, the framework of the GC-
PAF algorithms is developed. In Sec. 4, the proposed framework is 
applied to the NLMS algorithm, APA and APSA, respectively. The 
simulation results and detail descriptions are presented in Sec. 5. 
In Sec. 6, the optimal value of the key parameter ρgc of the com-
bined gain of the proposed algorithm is evaluated. Sec. 7 makes a 
conclusion.

2. Review of the PNLMS algorithm

We consider reference data {d(k)} that arises from the linear 
model

d(k) = uT (k)wopt + υ(k), (1)

where k stands for the time index, superscript T denotes vec-
tor or matrix transpose operation, u(k) = [u(k), u(k − 1), . . . ,
u(k − L + 1)]T denotes an L × 1 input vector with L being the filter 
length, wopt = [ω0, ω1, . . . , ωL−1]T is an unknown weight vector 
that needs to be estimated, and υ(k) stands for the background 
noise.

The PNLMS algorithm is summarized by the following equa-
tions [5]:

e(k) = d(k) − uT (k)w(k − 1), (2)

w(k) = w(k − 1) + μ
G(k)u(k)e(k)

uT (k)G(k)u(k) + β
, (3)

G(k) = diag
{

g0(k), g1(k), . . . , gL−1(k)
}
, (4)

where e(k) is the system output error, w(k) is the estimate of wopt
at iteration k, μ is a global step size, β is the regularization factor, 
and G(k) is an L × L diagonal gain distribution matrix that deter-
mines the step sizes of the individual coefficients of the filter. For 
the PNLMS algorithm, the diagonal elements of G(k) are calculated 
as follows:

lmax(k − 1) = max
{∣∣ω0(k − 1)

∣∣, . . . , ∣∣ωL−1(k − 1)
∣∣}, (5)

ϕn(k) = max
{
ρ max

[
η, lmax(k − 1)

]
,
∣∣ωn(k − 1)

∣∣}, (6)

gn(k) = ϕn(k)

1
L

∑L−1
i=0 ϕi(k)

0 ≤ n ≤ L − 1 (7)

where ρ and η are positive parameters with typical values ρ =
5/L and η = 0.01, respectively. The parameter η regularizes the 
updating when all of the coefficients are zero at initialization, and 
the parameter ρ prevents the very small coefficients from stalling.

3. The framework of the proposed GC-PAF algorithms

The update equations of the weight vectors of the OAF al-
gorithms (including the NLMS algorithm, APA and APSA) can be 
wrote as [1,22,25,26]:

w(k) = w(k − 1) + 1

2
A(k)δ(k), (8)

where δ(k) is a Lagrange multiplier (vector), which can be derived 
by substituting (8) into the constraint condition of the correspond-
ing algorithms, and A(k) is an input vector or matrix.

3.1. Algorithm design

In order to overcome the drawbacks of the PAF algorithms men-
tioned in Sec. 1, the weight vector w(k) of the adaptive filter is 
investigated by dividing it into two parts w1(k) and w2(k), one 
part w1(k) retains the advantages of the PAF algorithms in the con-
text of sparse impulse response, and the other part w2(k) retains 
the advantages of the OAF algorithms in the context of dispersive 
impulse response. Then w1(k) and w2(k) are combined together by 
a variable mixing factor λ(k) as

w(k) = λ(k)w1(k) + (
1 − λ(k)

)
w2(k), (9)

where 0 ≤ λ(k) ≤ 1. When λ(k) = 1, (9) reverts to the PAF algo-
rithms; when λ(k) = 0, (9) becomes the OAF algorithms. Benefit-
ing from this combination approach, the small coefficients receive 
more gain and as a result the proposed algorithms to reach steady-
state misalignment are faster.

In order to deduce the update equation of the weight vector of 
the proposed algorithms, we assume that the weight vector w(k −
1) is updated as w1(k) by using the optimization criterion in [22], 
and is updated as w2(k) by using (8), respectively, as

w1(k) = w(k − 1) + 1

2
G(k)A(k)δ(k), (10)

w2(k) = w(k − 1) + 1

2
A(k)δ(k). (11)

Substituting (10) and (11) into (9), we can obtain the update 
equation of the weight vector as

w(k) = λ(k)w1(k) + (
1 − λ(k)

)
w2(k)

= λ(k)

{
w(k − 1) + 1

2
G(k)A(k)δ(k)

}

+ (
1 − λ(k)

){
w(k − 1) + 1

2
A(k)δ(k)

}

= w(k − 1) + 1

2
λ(k)G(k)A(k)δ(k) + 1

2

(
1 − λ(k)

)
A(k)δ(k)

= w(k − 1) + 1

2

{
λ(k)G(k) + (

1 − λ(k)
)
I
}

A(k)δ(k)

= w(k − 1) + 1

2
GI(k)A(k)δ(k), (12)

where I is an L × L identity matrix, and

GI(k) = λ(k)G(k) + (
1 − λ(k)

)
I. (13)

3.2. Variable mixing factor design

Inspired by the convex combination method [31], the variable 
mixing factor λ(k) is defined as the output of a sigmoidal activa-
tion function [32,33] with an intermediate variable α(k) as
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