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Model comparison problems arise in many fields of science and engineering, including signal processing. 
In these problems, we wish to quantify how well each of a set of possible models describes a set of 
observations. Many numerical techniques exist to perform model comparison, but this paper focuses 
on nested sampling, which is a numerical integration algorithm for evaluating probabilities of models. 
The original formulation of nested sampling is a strictly sequential algorithm. Most modern advances in 
computing are via parallel processing, however, and we therefore present a novel method for parallelizing 
nested sampling. This paper sets out the mathematical foundation for this parallelization, as well as ideas 
for implementing it. Three examples demonstrate the effectiveness of the present parallel technique in 
realistic scientific and engineering data analysis problems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian inference allows scientists and engineers to draw con-
clusions from data in the presence of uncertainty. Inference prob-
lems confront practitioners in many contexts, including acoustics, 
astronomy, and digital signal processing in general. Within infer-
ence, model comparison is an important class of problems, which 
involves quantifying the plausibility of mathematical models given 
a set of observations, so as to compare and rank various models 
quantitatively.

Knuth et al. [1] give an overview of model comparison prob-
lems in various domains, with an emphasis on signal processing. 
Design-as-inference refers to the application of Bayesian model 
comparison and parameter estimation to design problems; it has 
been successfully applied to the design of finite impulse response 
(FIR) filters by Chan and Goggans [2] and to the design of infi-
nite impulse response (IIR) filters by Botts et al. [3]. In acoustic 
signal processing, Bayesian model comparison has been applied to 
the analysis of multiple decay slopes in coupled volumes [4–7], the 
analysis of room modes [8,9], and the design and analysis of mul-
tilayer sound absorbers [10].

These and other examples motivate the development of an ef-
ficient and effective method for performing Bayesian model se-
lection. Nested sampling [11–13] [14, Chapter 9] provides a good 
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starting point. Nested sampling is a robust method for numerically 
evaluating model probability integrals. In its original form it is a 
serial algorithm. Modern advances in computing have mostly been 
directed to increasing the amount of parallel processing power 
available to users, rather than simply increasing serial processing 
speed. Algorithms designed to be implemented on parallel com-
puting architectures are therefore able to solve problems more 
quickly on modern hardware.

The present paper develops a method for ‘parallelizing’ nested 
sampling in a way that is simple and easy to implement. Other 
researchers have published methods for parallelizing nested sam-
pling. Burkoff et al. [15] describe an alternate way to parallelize 
nested sampling, which works by discarding and replacing multi-
ple live samples for each likelihood constraint. (See Section 2.1.) 
Martiniani et al. [16] describe another application of the Burkoff 
method, and we have previously described [17] a method for im-
plementing this method while maintaining a given level of pre-
cision in the log-evidence estimate. The method described below 
implements the parallelization of nested sampling in a different 
and more effective way.

Other ways to improve the performance of nested sampling 
without necessarily involving parallelization have been presented 
by Brewer et al. (diffusive nested sampling) [18], Feroz et al. (Multi-
Nest) [19], and Handley et al. (PolyChord) [20].

This paper is organized as follows. Section 2 provides a brief 
overview of Bayesian inference and nested sampling, and moti-
vates the development of a parallelized nested sampling algorithm. 
Section 3 describes the specific method by which the samples pro-
duced by multiple independent runs of nested sampling can be 
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combined so as to generate a single estimate of the model prob-
ability. Section 4 details several strategies for implementing this 
method of combining independent nested sampling chains. Sec-
tion 5 provides three illustrative examples of this method and 
demonstrates the method’s effectiveness. Section 6 concludes the 
paper.

2. Bayesian inference and nested sampling

Bayesian inference provides a uniquely consistent way to learn 
from observations in the presence of uncertainty. Model-based 
Bayesian inference can be broken into two levels: parameter esti-
mation and model comparison. In traditional statistics, probability 
can be used to describe only random variables, but in the Bayesian 
view of probability any proposition can be assigned a probability 
conditioned upon any other. We may use Bayes’ theorem to write 
the probability for a set of model parameters � given observed 
data D, model M , and prior information I , as

Pr(�|D, M, I) = Pr(D|�, M, I)Pr(�|M, I)

Pr(D|M, I)
. (1)

Below, the following abbreviations will often be used: Pr(�|D,

M, I) ≡ P(�) for the posterior, Pr(D|�, M, I) ≡ L(�) for the like-
lihood, Pr(�|M, I) ≡ π(�) for the prior, and Pr(D|M, I) ≡ Z for 
the evidence. Equation (1) provides a framework for performing 
Bayesian parameter estimation. Various analytical and numerical 
techniques exist for implementing (1) in this way. Gregory [21]
provides a fine explanation of Bayesian parameter estimation in 
general and techniques for implementing it in practice.

This paper is less concerned with parameter estimation and 
more concerned with the second layer of inference, model com-
parison. Once again using Bayes’ theorem, we can express the 
probability for a model M , given data D and prior information I , 
as

Pr(M|D, I) ∝ Pr(D|M, I)Pr(M|I). (2)

The normalizing constant Pr(D|I) is omitted here because proper 
posterior probabilities for models are rarely necessary (or, in fact, 
available). To calculate this constant an exhaustive set of models 
must be specified, which is usually impossible. Model selection 
mostly calls for the pairwise comparison of different models in 
the light of the same data. It is then useful to write the ratio of 
probabilities of model Mi and model M j as

Pr (Mi|D, I)

Pr
(
M j|D, I

) = Pr (D|Mi, I)

Pr
(
D|M j, I

) Pr (Mi|I)
Pr

(
M j|I

) . (3)

This equation shows that the posterior ratio of probabilities is 
given by multiplying the prior ratio by the ratio of likelihoods ap-
pearing in the first term on the right-hand side, which imports the 
data.

The model priors (in the right-most fraction in (3)) are set ac-
cording to the user’s prior knowledge, and are known in advance 
of any observations. To find the pairwise ratios of model posteriors 
(the left-hand side in (3)), we need to specify the model likelihood 
values. In fact the model likelihood in (3) is the same expression 
as the evidence (the denominator) in the associated parameter es-
timation problem (1).

The evidence in (1) acts as a normalizing constant for the pos-
terior distribution over the set of parameters �. It can therefore 
be found by integrating the product of the prior and the likelihood 
for a given model over the parameter space:

Pr(D|M, I) =
∫
�

Pr(D|�, M, I)Pr(�|M, I)d�. (4)

The integrand in (4) is often close to zero over much of �, with 
large values concentrated in a small portion of the parameter 
space. Models may also have many parameters, so that the in-
tegration is in a multi-dimensional space. As a result, numerical 
integration over the parameter space using any reasonable dis-
cretization of the variables gives rise to unacceptably large errors.

Alternative techniques for computing the evidence have been 
adapted from statistical mechanics. The evidence for a model given 
a set of data is analogous to the free energy in a given thermo-
dynamic state. Based on this analogy, thermodynamic integration 
[22] computes the Bayesian evidence by integrating the expecta-
tion of the log-likelihood over an inverse temperature parameter.

Unfortunately, thermodynamic integration suffers from several 
serious limitations. It typically takes a long time to run for prob-
lems with large numbers of data or a large number of parame-
ters. Also, likelihood functions with discontinuities—comparable to 
phase transitions in statistical mechanics—tend to confound ther-
modynamic integration. Nested sampling [12] is another technique 
for computing Bayesian evidence and was developed partly to 
overcome these limitations.

2.1. Nested sampling

Nested sampling is similar to thermodynamic integration in 
that it side-steps the multi-dimensional integral in (4) by using 
a one-dimensional reparameterization to find the evidence. Instead 
of cooling a temperature parameter to gradually introduce the like-
lihood, nested sampling integrates the likelihood over the prior 
mass. The prior mass, X , is defined as the proportion of the prior 
distribution contained within a likelihood threshold L,

X(L) =
∫

{�:L(�)>L}
π(�)d�. (5)

As the prior mass is a 1-to-1 function of the likelihood, the likeli-
hood threshold can be expressed as a function of the prior mass. 
Ultimately the evidence can be expressed as

Z =
1∫

0

L(X)dX . (6)

The detailed derivation is given in Skilling’s original paper on 
nested sampling [12].

At first sight it appears that we are no better off with this rep-
resentation, because the integral in (5) is no easier to evaluate than 
the integral in (4). Nested sampling does not require exact compu-
tation of the prior mass, however; an estimate is sufficient. Nested 
sampling simultaneously generates estimates for the prior mass 
and incorporates them into a numerical evaluation of (6). This pro-
cess will now be described.

Nested sampling proceeds by setting the initial likelihood 
threshold to 0 and drawing N samples from π(�). These N sam-
ples are known as “live” samples. The likelihood values for each 
of these live samples are computed exactly. The live sample with 
the least likelihood is then discarded from the set and recorded for 
later use. The likelihood of the discarded sample is set as the new 
likelihood threshold, within which a new sample will be generated 
in the next round of operations.

The shrinkage ti in the prior mass Xi at the ith step in the 
process is distributed as [12]

ti ∼ Beta(N,1). (7)

The prior mass is estimated at each likelihood threshold using the 
log-geometric mean of the shrinkage (E(log ti) = −1/N). Remem-
bering that ti is the shrinkage in the prior mass at step i, the prior 
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