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The Locally Optimized Spectrogram (LOS) defines a novel method for obtaining a high-resolution time–
frequency (t, f ) representation based on the short-time fractional Fourier transform (STFrFT). The key 
novelty of the LOS is that it automatically determines the locally optimal window parameters and 
fractional order (angle) for all signal components, leading to a high-resolution and cross-terms free time–
frequency representation. This method is suitable for multicomponent and non-stationary signals without 
a priori signal information. Simulated signals, real biomedical applications, and various measures are used 
to validate the improved performance of the LOS and compare it with other state-of-the-art methods. 
The robustness of the LOS is also demonstrated under different signal-to-noise ratio (SNR) conditions. 
Finally, the relationship between the LOS and other time–frequency distributions (TFDs) is depicted and 
a recursive formulation is presented and shows the trade-off between the cross-terms suppression and 
auto-terms resolution.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

As most signals observed in nature are non-stationary, it is use-
ful to represent them in a time–frequency (t, f ) domain. One of 
the simplest ways is to use the spectrogram, as it is robust, compu-
tationally efficient and easy to interpret because it is cross-terms 
free when components are not too close (see section 4.2 in [4]). 
It is still one of the prominent methods for (t, f ) analysis in many 
applications such as speech processing [1], signal denoising [2] and 
instantaneous frequency (IF) estimation [3]. However, the perfor-
mance of the spectrogram is heavily dependent on the analysis 
window which is set heuristically [4, pp. 78–79] [5]. This fixed 
window approach is not suitable for multicomponent signals com-
posed of both short and long duration overlapping components. 
This is a major limitation of the use of the spectrogram. A solution 
is to optimize the analysis window locally to produce an improved 
(t, f ) representation [5].

A variant of the spectrogram is the S-transform whose win-
dow (Gaussian) width is inversely proportional to the frequency. 
It improves the time resolution at higher frequencies and the fre-
quency resolution at lower frequencies [4, pp. 310–311]. There 
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is no parameter that is used to adjust the analysis window in 
the standard S-transform. A modified S-transform (MST) [6] can 
be defined in a number of ways e.g. by optimizing the window 
length using energy concentration [7]. A frequency based window-
width optimization has also been proposed to improve the res-
olution of the S-transform [8]. Another variant is the S-method 
(SM) [9, pp. 256–261] and the performance of this method also 
depends on the choice of analysis window, window length and 
correction terms which are needed to be set and optimized. In 
addition, signals composed of closely spaced chirp signals, or a 
mixture of short and long duration components which overlap 
within the (t, f ) domain pose significant problems for these modi-
fied methods because the representation of the signal components 
is inevitably compromised by the lack of local optimization. To 
overcome these issues, this study proposes an improved (t, f ) rep-
resentation, named Locally Optimal Spectrogram (LOS) based on 
the fractional Fourier transform (FrFT) to locally enhance the reso-
lution. This method is well-suited for the analysis of multicompo-
nent, non-stationary signals lacking a priori information, a common 
situation when one deals with real-life signals such as electroen-
cephalograph (EEG) signals.

This paper presents a methodology to get the new LOS from the 
short-time fractional Fourier transform (STFrFT) by locally optimiz-
ing both window length and chirp rate. The results demonstrate 
the effectiveness of the LOS using different simulated signals and 
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a real-life application which uses clinical EEG signals. The contri-
butions and key topics covered by this paper are as follow:

• A simple and efficient optimization procedure is proposed to 
enhance the resolution of the spectrogram for non-stationary 
and multicomponent signals by taking the window length and 
chirp rate into account. This process ensures the compact rep-
resentation of the local signal behavior both in time and fre-
quency (Section 2).

• Different simulated multicomponent signals of varied am-
plitude and wide-ranging (t, f ) characteristics are used to 
demonstrate the efficiency of the proposed method. The LOS is 
compared with other state-of-the-art fixed and adaptive time–
frequency (t, f ) methods in Section 4.

• Various (t, f ) measure indexes are used to ensure: (1) a thor-
ough and rigorous quantitative evaluation and (2) a fair com-
parison of the LOS with other state-of-the-art methods in Sec-
tion 5.

• The robustness of the LOS is evaluated for instantaneous fre-
quency (IF) estimation purpose. In Section 6, a simulation is 
run 100 times under different SNR conditions (Monte-Carlo 
approach) comparing the effectiveness and robustness of the 
LOS with other well-known TFDs.

• Section 7 demonstrates the superior performance of the LOS 
method on a real application that is to detect clinically abnor-
mal burst-suppression patterns in neonatal EEG signals.

• Section 8 discusses a relationship between LOS and other 
TFDs; this relationship generalizes the proposed approach.

Note that, this paper focuses only on the analysis of QTFDs due 
to their simple interpretation, high resolution and widespread use. 
Appendix A defines state-of-the-art QTFDs. Appendix B provides 
a pseudocode for generating the fractional S-Method. In addition, 
computer programs used in this study are described in Appendix C.

2. Background literatures and existing works

The proposed LOS is derived from FrFT and therefore, it is im-
portant to briefly describe the FrFT before the presentation of the 
proposed method.

2.1. Fractional Fourier transform (FrFT)

The FrFT is the generalization of the classical Fourier transform 
(FT). It can be regarded as a rotation by an arbitrary angle α in the 
(t, f ) plane [10,11]. The FT corresponds to a rotation over an angle 
α = π/2 in the (t, f ) plane. The FrFT is defined as [12]:

Xα(u) =
∞∫

−∞
x(t)Kα(u, t)dt (1)

where α = p(π/2); p ∈R and the kernel Kα is defined by

Kα(u, t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1− j cot α

2π e j (u2+t2) cot α
2 − jut

sin α , α �= qπ

δ(u − t), α = 2qπ

δ(u + t), α = (2q + 1)π

, q ∈ N

(2)

where δ denotes the Dirac function.
Special cases of the FrFT are: X0(u) = x(t), Xπ (u) = x(−t)

and Xπ/2(u) corresponding to the classical FT. The orthogonal 
pair (u, v) characterizes a new physical quantity in the fractional 
Fourier domain and related to (t, f ) as [13]:

Fig. 1. Illustration of classical FT and Fractional FT and the representation of a signal 
whose principal axis corresponds to fractional time–frequency axis. α is the angle 
(α = p(π/2)) and p is the transform order ranging from 0 to 4.(

t

f

)
=

(
cosα − sinα
sinα cosα

)(
u

v

)
(3)

where u, v represents the rotation of time and frequency respec-
tively, with an angle α, in the fractional domain. Therefore, the 
(u, v) plane is only the rotation of the (t, f ) plane in the fractional 
domain by an angle α (see Fig. 1).

2.2. Rationale for using the FrFT

Fig. 1 interprets the concept of FrFT in the (t, f ) plane. By ap-
plying the classical FT denoted by, F(x(t)), a time domain signal 
x(t) is changed to its frequency domain counterpart, X( f ), which 
rotates the signal over an angle π/2 counter-clockwise. By again 
applying FT i.e. F2(x(t)) = x(−t) rotates 2π/2 angle and similarly 
F3(x(t)) = X(− f ) rotates 3π/2 and F4(x(t)) = x(t) rotates 4π/2
[12].

The FrFT F p(x(t)) provides a generalization of the classical 
FT and offers improved flexibility when designing high resolution 
(t, f ) signatures as the signal chirp rate can be adapted by this 
approach. In the case of a signal whose principal axis does not 
correspond to the time or the frequency plane, as in Fig. 1, the 
FrFT applies an affine transformation in the phase plane leading to 
an optimum signal representation [13]. This can be done by prop-
erly adjusting the FrFT transform order (angle). This justifies the 
analysis of a signal in the fractional Fourier domain.

2.3. Short-time fractional Fourier transform (STFrFT)

By generalizing the short-time Fourier transform (STFT) in the 
same manner as the FT, the short-time fractional Fourier transform 
(STFrFT) can be defined as [9, pp. 135–136]:

STFrFTα(u, v) =
∞∫

−∞
Xα(u + τ )w∗(τ )e− j2π vτ dτ (4)

STFrFTα(u, v) = e jπ(uv−t f )

∞∫
−∞

x(t + τ )F−α
(

w(τ )
)
e−2 jπτ f dτ

(5)

where w(τ ) is a window function. These formulations indicate 
that the lag truncation can be applied prior to or after signal ro-
tation with the same results [9, pp. 135–136]. The fractional spec-
trogram (FrSpec) is calculated by squaring the magnitude of STFrFT 
i.e.

FrSpec(u, v) = ∣∣STFrFTα(u, v)
∣∣2

(6)

Eqns. (4)–(6) indicate that the performance of the STFrFT and 
FrSpec is determined by the rotation angle α, the shape and the 
length of the analysis window. The transform order determines 
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