
Development of scheduling strategies with Genetic Fuzzy systems

Carsten Franke a,1, Frank Hoffmann b, Joachim Lepping a,*, Uwe Schwiegelshohn a

a Robotics Research Institute, Section Information Technology, University Dortmund, D-44221 Dortmund, Germany
b Control System Engineering, University Dortmund, D-44221 Dortmund, Germany

Received 5 May 2006; received in revised form 4 April 2007; accepted 30 May 2007

Available online 2 June 2007

Abstract

This paper presents a methodology for automatically generating online scheduling strategies for a complex objective defined by a machine

provider. To this end, we assume independent parallel jobs and multiple identical machines. The scheduling algorithm is based on a rule system.

This rule system classifies all possible scheduling states and assigns a corresponding scheduling strategy. Each state is described by several

parameters. The rule system is established in two different ways. In the first approach, an iterative method is applied, that assigns a standard

scheduling strategy to all situation classes. Here, the situation classes are fixed and cannot be modified. Afterwards, for each situation class, the best

strategy is extracted individually. In the second approach, a Symbiotic Evolution varies the parameter of Gaussian membership functions to

establish the different situation classes and also assigns the appropriate scheduling strategies. Finally, both rule systems will be compared by using

real workload traces and different possible complex objective functions.

2007 Elsevier B.V. All rights reserved.

Keywords: Scheduling algorithm development; Online scheduling; Genetic Fuzzy system; Symbiotic Evolution

1. Introduction

In this paper, we address an online scheduling problem with

independent jobs submitted by different users. Unfortunately,

for those problems, most common simple scheduling objec-

tives, like the makespan [20], the total weighted completion

[31] or response time [47] are not sufficient to represent the

intentions of the machine provider. As example take the

scheduling of computational jobs on a parallel computer

system. There the users typically are partitioned into a small set

of user groups which are assigned different priorities. Today,

parallel computer systems are increasingly part of Computa-

tional Grids, that is, users from other sites with often low

priority use those systems as well. As the common scheduling

objectives are not suited to efficiently handle those priorities,

the machine provider often sets quotas to prevent lower priority

groups to occupy too many resources. However, those quotas

tend to reduce machine utilization significantly.

Similar problems occur in many other application areas of

practical importance, like telecommunications and logistics.

Nevertheless, we focus in this paper on parallel computer

systems as for those systems, real trace data are available that

can be used to evaluate new approaches, see, for instance, the

Standard Workload Archive [16], described by Chapin et al.

[10]. It is vital to use real data to develop good scheduling

algorithms as there is no method that guarantees an optimal or

almost optimal solution for all input data.

The scheduling of parallel computer systems is an online

problem as jobs are submitted over time and the precise

processing times of those jobs are frequently not known in

advance. Furthermore, information about future jobs are

usually not available [25]. Formally, each job j is part of a

job system t and belongs to a user group. It is characterized by

its degree of parallelism mj, its processing time pj, and

additional criteria, see Feitelson and Nitzberg [17]. During the

execution phase, job j requires the concurrent and exclusive

access to mj < m processing nodes with m being the total

number of nodes on the parallel computer system. The number

of required processing nodes mj is available at the release date rj

of job j and does not change during the execution. As the

network does not favor any subset of the nodes and all nodes of

a parallel computer system are either identical or very similar,

we assume that a job j can be processed on any subset of mj

www.elsevier.com/locate/asoc

Applied Soft Computing 8 (2008) 706–721

* Corresponding author. Tel.: +49 231 755 4657; fax: +49 231 755 3251.

E-mail addresses: carsten.franke@udo.edu (C. Franke),

frank.hoffmann@udo.edu (F. Hoffmann), joachim.lepping@udo.edu

(J. Lepping), uwe.schwiegelshohn@udo.edu (U. Schwiegelshohn).
1 Born Carsten Ernemann.

1568-4946/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2007.05.009

mailto:carsten.franke@udo.edu
mailto:frank.hoffmann@udo.edu
mailto:joachim.lepping@udo.edu
mailto:uwe.schwiegelshohn@udo.edu
http://dx.doi.org/10.1016/j.asoc.2007.05.009

nodes of the system. Note that in the rest of this paper, we

replace the expression node by machine as this is the common

terminology in scheduling problems.

As already mentioned, the processing time pj is not known

before the job has been completed. However, some systems

require the users to provide an estimate p̄ j of this processing

time. If the actual processing time of a job exceeds this

estimate, the job is canceled to protect the system and the user

from the costs of additional resource consumption by a possibly

faulty job. In addition, this estimate is also used for some

scheduling algorithms, like Backfilling [33]. Unfortunately,

those estimates are of limited use for scheduling purposes as

users tend to overestimate the processing time of their jobs in

order to avoid the termination of correct jobs, see, for example,

Lee et al. [32]. Most current real installations of parallel

computers do not use preemption but let all jobs run to

completion unless they are terminated as discussed above. The

completion time of job j within the schedule S is denoted by

Cj(S). Furthermore, precedence constraints between jobs are

rare and it is almost impossible for the machine owner to detect

them if they exist. Hence, we assume that all jobs are

independent.

Contrary to many theoretical online scheduling problems

addressed previously, see, for instance, Albers [2], the

scheduling of job j does not need to take place directly after

its release date rj. Instead, the allocation is established when

sufficient machines become available, that is just before the

start of job j at time (Cj � pj). Due to the frequency of job

submissions and the size of m for many parallel computers,

scheduling decisions must still be made within a short period of

time after the release of a job. As information about future job

submissions is not available compute intensive quasi offline

scheduling algorithms cannot be used in this scenario.

In general, it is very difficult to optimally solve most

scheduling problems. This is even true for offline problems with

simple scalar objective functions as many of them are NP-hard

[21]. Therefore, existing online scheduling systems at real

installations mainly use heuristics, like Greedy Scheduling [24]

in combination with a First Come First Serve (FCFS) approach

and the above-mentioned Backfilling [33,22]. Although those

algorithms produce a very low utilization in the worst case [41]

they yield reasonably good results in practice [18]. But they do

not allow different priorities for jobs or user groups apart from

exclusively assigning computer partitions to user groups [28],

limiting the total processing time of a user group, or statically

weighing the waiting time of jobs. All those algorithms are

rather cumbersome and often lead to a low utilization as already

mentioned. Recently, there have been suggestions to consider

market oriented scheduling approaches [8] which accept more

flexible objectives and are able to adapt to variations in the job

submission pattern. However, existing research projects in this

area only use two simple linear objective functions: time and

cost minimization [7]. So far no really flexible scheduling

algorithm has been developed for parallel computer systems.

Furthermore, our method is applicable to a broad range of

resource allocation and scheduling problems in grid applica-

tion. Aggarwal and Kent [1] present a scheme to adapt

scheduling decisions to the grid infrastructure, dynamic

workload and envrionmental conditions. The adaptation

scheme employs a heuristic for optimal allocation of jobs to

nodes within the grid, but does not consider costs or rewards

explictly to adapt the scheduling algorithm in the context of the

dynamic workload.

Within this work, we present a methodology to automati-

cally generate a rule-based scheduling system that is able to

produce good quality schedules with respect to a given complex

objective. This objective defines the prioritization of different

user groups. Even if different providers use the same basic

objectives for the various groups the transformation of a generic

multi-objective scenario into a specific scheduling problem

with a single objective depends on the actual priorities assigned

to the user groups and is likely to be individual. Hence, we

focus on the development of a suitable methodology. To this

end, we present a rule-based scheduling that is able to adapt to

various scenarios. So far, the use of rule-based systems in

scheduling environments is rare. Nevertheless, first attempts

[13,9] have shown the feasibility of such an approach. However,

those scheduling systems are all based on single objective

evaluation functions that are not optimized.

The proposed scheduling process is divided into two steps.

In the first step, the queue of waiting jobs is reordered according

to a sorting criterion. Then an algorithm uses this order to

schedule the jobs onto the available machines in the second

step. Based on the present scheduling state, the rules determine

the sorting criterion and the scheduling algorithm. In order to

guarantee general applicability, the system classifies all

possible scheduling states. This classification considers the

actual schedule, the current waiting queue, and additional

external factors, like the time of day.

The problem of sequential making decision making in

complex domains has gained substantial attention in the past

[38]. Classical approaches for dynamic programming and

reinforcement learning soon become infeasible due to the

complexity of the state-action space. Therefore, Schoknecht

et al. [38] present an attempt to reduce the search space for the

optimal policy by adapting and restricting the set of possible

alternative actions in order to accelerate the learning. Even

though the application is concerned with optimal control, the

method is applicable to general Markov decision processes.

This paper pursues a similar objective, namely reduction of the

search space complexity, but differs in so far as it granularizes

the state space rather than the action space. The fuzzy partition

of the state space lumps together originally distinct states and

associates them with the same action.

As already mentioned, the development of scheduling

strategies for parallel computers is typically based on real

workload traces. Those traces implicitly include all relevant

characteristics and hidden properties, like temporal patterns,

dependencies between jobs, or certain user behaviors. As local

scheduling decisions influence the allocation of future jobs, the

effect of a single decision cannot be determined individually.

Therefore, the whole rule base is only evaluated after the

complete scheduling of all jobs belonging to a workload trace.

This has a significant influence on the learning method to

C. Franke et al. / Applied Soft Computing 8 (2008) 706–721 707

Download English Version:

https://daneshyari.com/en/article/497377

Download Persian Version:

https://daneshyari.com/article/497377

Daneshyari.com

https://daneshyari.com/en/article/497377
https://daneshyari.com/article/497377
https://daneshyari.com

