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In this paper, a novel non-parametric Bayesian compressive sensing algorithm is proposed to enhance 
reconstruction performance of sparse entries with a continuous structure by exploiting the location 
dependence of entries. An approach is proposed which involves the logistic model and location-
dependent Gaussian kernel. The variational Bayesian inference scheme is used to perform the posterior 
distributions and acquire an approximately analytical solution. Compared to the conventional clustered 
based methods, which only exploit the information of neighboring pixels, the proposed approach takes 
the relationship between the pixels of the entire image into account to enable the utilization of the 
underlying sparse signal structure. It significantly reduces the required number of observations for 
sparse reconstruction. Both real-valued signal applications, including one-dimension signal and two-
dimension image, and complex-valued signal applications, including single-snapshot direction-of-arrival 
(DOA) estimation of distributed sources and inverse synthetic aperture radar (ISAR) imaging with a 
limited number of pluses, demonstrate the superiority of the proposed algorithm.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Sparse signal recovery and the associated compressive sensing 
(CS) approaches have attracted significant attention in recent years 
[1,2]. The CS techniques have the capability of recovering signals 
from a small number of measurement samples with a high prob-
ability, provided that the signals are sparse or can be sparsely 
represented in some known domains.

A typical sparse reconstruction problem in the CS model is 
given by,

y = �w + ε, (1)

where y ∈ RN is the observation vector, and ε ∈ RN is an un-
known zero-mean Gaussian noise vector. � ∈ RN×M is a known 
and wide dictionary matrix with N � M , and w ∈RM×1 is a spar-
sity vector to be estimated. It can be shown that vector y preserves 
the information of w if w is sparse and the so-called restricted 
isometry property (RIP) is satisfied [2]. Define δA as the constant 
of RIP for a sensing matrix � ∈RN×M . If
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where mK = (MK ) for a K -sparse signal, and c > 0 is a constant, 
then the RIP is satisfied for all elements in the subspace with the 
probability 1 −e−t [3]. Using the approximation 

(M
K

)≈ (N/K )K , the 
required number of observations is given by [1,2]

N = O(K log(N/K )). (3)

To invert Eq. (1), i.e., to reconstruct the original sparse signal vector 
w from y, a sparsity-promoting scheme is often used, such as

ŵ = arg min
w

1

2
‖y − �w‖2

2 + λ‖w‖p, (4)

where ‖ · ‖p is the lp -norm with p ∈ [0, 1], to encourage signal 
sparsity. In the above expression, λ is an elastic parameter to 
balance the observation fitness and the sparse prior. For p = 0, 
the above expression corresponds to the iterative hard threshold-
ing (IHT) algorithm [4]; for p ∈ (0, 1), it becomes the iterative 
reweighed algorithm [5]; when p = 1, it becomes a typical formula 
of basis pursuit denoising (BPDN) or Lasso problem [6,7].

A number of algorithms have been proposed to recover sparse 
signals. Commonly used algorithms include greedy algorithms, 
such as orthogonal matching pursuit (OMP) [8], and dynamic pro-
gramming algorithms, such as basis pursuit (BP) [9], its extended 
version for denoising [6], and Lasso algorithm [7]. While all these 

http://dx.doi.org/10.1016/j.dsp.2017.08.007
1051-2004/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.dsp.2017.08.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:qisong.wu@seu.edu.cn
http://dx.doi.org/10.1016/j.dsp.2017.08.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2017.08.007&domain=pdf


96 Q. Wu, S. Fang / Digital Signal Processing 71 (2017) 95–107

algorithms have the capabilities of reconstructing sparse signals, 
they require information about the number of non-zero elements 
either explicitly or through setting of the regularization parame-
ter, which, in practice, may not be easily obtained. Bayesian CS 
(BCS) or sparse Bayesian learning (SBL) approaches form a different 
class of sparse signal reconstruction algorithms, which generally 
yield improved performance [10–12]. Sparse Bayesian learning al-
gorithms provide effective solutions to a large class of problems 
based on non-parametric BCS framework, and thus have the ca-
pabilities of inferring the sparsity parameters and avoiding the 
nuisance parameters.

In addition to the signal sparsity, the coefficient vector w of-
ten exhibits special structures. For example, in direction-of-arrival 
(DOA) estimation, spatially spreading sources exhibit continuous 
angular occupancies [13–15]. In the inverse synthetic aperture 
radar (ISAR) imaging, the illuminated targets usually exhibit a 
cluster structure in the high-resolution radar system [16,17]. In 
through-the-wall radar imaging, most human and structural tar-
gets of interest have extended occupancies that are clustered in the 
image domain [18,19]. In the time-frequency analysis, frequency 
modulated (FM) signals have a sparse and continuous signatures 
in the time-frequency domain [20]. These structure characteristics 
can be exploited as a known information, and heuristically en-
hance the reconstruction performance.

The existing recovery algorithms for various structure mod-
els include block sparsity [21–28], tree structure [29], and clus-
ter structure [16,17,30–34]. By exploiting signal structures, those 
methods significantly improve the sparse signal reconstruction per-
formance in two aspects, namely increasing the recovery robust-
ness and reducing the required number of measurements. Com-
pared with the required number in Eq. (3) in the conventional 
CS, N reduces to O(K ). Although all these algorithms take the 
known structure into account to enhance the reconstruction per-
formance, they also introduce some new unknown parameters, 
such as the size and the number of block sparsity, which, in prac-
tice, may be not easily obtained. In the reconstruction of the block 
sparse signals, the locations and the size of each block are required 
in the recovery procedure, and the number of block sparsity is 
also necessary in [21]. Non-parametric clustered BCS approaches, 
which impose the cluster structure prior by exploiting the informa-
tion of neighboring pixels, automatically infer the sparsity number, 
locations and sizes of the clusters. However, each local pattern 
has to be appropriately assigned to corresponding sets of hyper-
parameters [16,31,33], in which only first-order neighboring pixels 
are taken into account. The extended approach in including the 
second-order neighboring pixels is considered by exploiting the 
Markov random fields (MRF) to avoid the selection of nuisance 
hyper-parameters [17]. In addition, when the patterns in the real-
world applications do not exactly match those assigned patterns, 
the recovery performance would degrade.

In this paper, we propose a novel logistic Gaussian kernel 
based algorithm to improve sparse signal reconstruction perfor-
mance by exploiting the location features. A spike-and-slab prior 
is first employed to impose the signal sparsity. Unlike the previ-
ous approaches developed in [16,30,31,33], which assign specific 
local patterns to set priors for the exploitation of clustered struc-
tures, the proposed logistic Gaussian kernel model, which com-
bines the logistic model with the location-dependent Gaussian ker-
nel, takes the relationship between a pixel and the entire signal 
entries into account. It enhances the sparse reconstruction perfor-
mance by properly representing the underlying contiguous struc-
ture. The proposed approach is outlined in [35] where a Markov 
Chain Monte Carlo (MCMC) sampler scheme was used to perform 
posterior inference. As an application example, the multi-static 
passive radar imaging problem is considered in [36]. In this paper, 
we provide a comprehensive description, derivation, and analysis 

of this approach. In addition, to overcome the issues of expen-
sive sampling and inefficient convergence diagnosis as observed in 
the MCMC sampler scheme, we further implement the variational 
Bayesian (VB) inference scheme to perform the derivation of pos-
terior distributions. Due to the exploitation of the signal structure, 
the required number of measurements for robust reconstruction is 
significantly reduced. The effectiveness of the proposed method is 
verified with one-dimension signal example, two-dimension image 
example and two complex-valued applications, i.e., single-snapshot 
DOA estimation of distributed sources and ISAR imaging with a 
limited number of pluses.

Notations: We use lower-case (upper-case) bold characters to 
denote vectors (matrices). (·)T denotes the transpose a matrix or 
vector. diag(x) represents a diagonal matrix that uses the ele-
ments of x as its diagonal elements. “◦” denotes an element-wise 
multiplication. p(·) denotes the probability density function (pdf). 
N (x|a, b) and CN (x|a, b), respectively, denote that random vari-
able x follow a real and complex Gaussian distribution with mean 
a and variance b. Gamma(x|a, b) represents that random variable 
x follows a Gamma distribution with parameters a and b, and 
Bern(x|π) implies that random variable x follows a Bernoulli dis-
tribution with weight π . ‖ · ‖p is the lp norm. E(x) denotes the 
expectation of the random variable x. IN denotes the N × N iden-
tity matrix.

2. Data-augmentation approach for logistic mode

Bayesian inference for the logistic model is considered a dif-
ficult problem, owing to the analytically inconvenient form of 
the model’s likelihood function. However, in [37], a novel data-
augmentation strategy was proposed for Bayesian inference of the 
logistic model by introducing latent variables following the Pólya-
Gamma (PG) distribution. This strategy leads to a simple, effective 
method for Bayesian inference [37]. To briefly introduce the data-
augmentation approach, we focus on a fundamental integral iden-
tity at the core of the method,

(ex)a

(1 + ex)b
= 2−beκx

∞∫
0

e−ωx2/2 f (ω)dω, (5)

where κ = a − (b/2), and f (ω) = PG(ω|b, 0) is a PG distribution 
with parameters (b, 0). The function PG(ω|b, c) is defined as

PG(ω |b, c ) = τ (b, c)
∞∑

n=0

(−1)n �(n + b)�(2n + b)

�(n + 1)
√

2πω3
e− (2n+b)2

8ω − c2ω
2 ,

(6)

where τ (b, c) = coshb(c/2)2b−1/�(b) and �(·) is a Gamma func-
tion. According to the property of PG distribution, the expectation 
of ω is given as [37],

E(ω) = b

2c
· ec − 1

1 + ec
. (7)

Moreover, the conditional distribution

p(ω |x ) = e−ωx2/2 f (ω)∫∞
0 e−ωx2/2 f (ω)dω

, (8)

which arises in treating the intergrand in Eq. (5) as an un-
normalized joint density in (x, ω), is also in the PG class: p(ω|x) ∼
PG(ω |b, x ) [37].

By introducing the latent PG variable ω, the logistic model in 
Eq. (5) can be achieved by a hierarchical sampling structure, where 
the main parameter x follows the Gaussian distribution with pa-
rameter ω, whereas ω in a lower layer follows the PG distribution.
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