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Spatial smoothing techniques have been widely used to estimate the directions-of-arrival (DOAs) of 
coherent signals. However, in general these techniques are derived under the condition of uniform white 
noise and, therefore, their performance may be significantly deteriorated when nonuniform noise occurs. 
This motivates us to develop new methods for DOA estimation of coherent signals in nonuniform noise 
in this paper. In our methods, the noise covariance matrix is first directly or iteratively calculated from 
the array covariance matrix. Then, the noise component in the array covariance matrix is eliminated to 
achieve a noise-free array covariance matrix. By mitigating the effect of noise nonuniformity, conventional 
spatial smoothing techniques developed for uniform white noise can thus be employed to reconstruct 
a full-rank signal covariance matrix, which enables us to apply the subspace-based DOA estimation 
methods effectively. Simulation results demonstrate the effectiveness of the proposed methods.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Direction-of-arrival (DOA) estimation using sensor arrays is an 
important task in many applications such as radar, sonar, and 
wireless communications. Usually, this problem is tackled by as-
suming uniform white noise, i.e., the noise covariance matrix is a 
scaled identity matrix. This assumption can reduce the number of 
unknown parameters and, therefore, the computational complex-
ity [1]. In practice, the noise, however, could be colored [2–4] and 
non-Gaussian [5]. Particularly, in certain applications, the sensor 
noise is uncorrelated but variances across the array are not iden-
tical, which leads to the so-called nonuniform noise. In this case, 
DOA estimation approaches which rely on the assumption of uni-
form white noise cannot perform satisfactorily due to the incorrect 
noise model adopted [6].

Numerous studies have been devoted to the problem of DOA 
estimation in the presence of nonuniform noise. In [6], the 
maximum-likelihood (ML) estimator [1] for uniform noise has been 
extended to nonuniform noise through the stepwise concentra-
tion of the log-likelihood function with respect to the signal and 
noise nuisance parameters. Based on the similar scheme of step-
wise concentration, a stochastic ML estimator is proposed in [7] for 
stochastic signals and an improved version of this algorithm has 
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been reported in [8]. Madurasinghe [9] proposed a power domain 
approach which can relieve the computational burden of nonuni-
form ML estimators to some extent, since the DOA estimates are 
achieved by solving a nonlinear problem without iterations or de-
termining the noise variances. In [10], a computationally attractive 
method which only needs a one-dimensional search is proposed. 
In [11], the noise covariance matrix is estimated by exploiting 
the relationship among the sub-matrices of the array covariance 
matrix. In [12,13], a noise-free sparse representation for DOA es-
timation is built by vectorizing the array covariance matrix and 
removing the entries which include noise variances. In [14], two 
optimization problems based on the ML and least-squares (LS) es-
timations are formulated to estimate the signal subspace and noise 
covariance matrix in an iterative manner. Unlike the nonuniform 
ML estimators, the unknown variables are obtained in an analytical 
form in each iteration. More recently, by assuming high signal-to-
noise ratios (SNRs), improved subspace-based DOA estimators have 
been studied in [15].

It is worth noticing that the aforementioned methods are ap-
plicable to cases with uncorrelated signals only or noncoherent 
signals. As a matter of fact, even though algorithms such as [14]
are theoretically able to handle any noncoherent signals, their per-
formance would be significantly deteriorated when the signals are 
highly correlated [16]. To deal with coherent signals, numerous 
strategies using spatial smoothing [17–20] and higher-order statis-
tics [21] have been proposed for uniform white noise and col-
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ored noise, respectively. However, the problem of DOA estimation 
of coherent signals in nonuniform noise has not been adequately 
addressed. To the best of our knowledge, only a generalized covari-
ance differencing (GCD) approach based on the spatial smoothing 
principle has been proposed to eliminate nonuniform noise and re-
solve coherent signals [22]. However, in this approach, pseudo DOA 
estimates exist and have to be properly treated. Moreover, the al-
gorithm is likely to break down when the pseudo and actual angles 
are not sufficiently separated.

Since spatial smoothing techniques are able to decorrelate co-
herent signals and reconstruct a full-rank signal covariance matrix, 
in this paper we propose to apply them to the noise-free covari-
ance matrix, which is achieved by eliminating the noise covariance 
matrix from the array covariance matrix, to estimate the DOAs of 
coherent signals in nonuniform noise. To this end, two new noise 
covariance matrix estimation algorithms are devised. The first one 
directly calculates the noise covariance matrix from the array co-
variance matrix, while the other one extends the iterative least 
squares subspace estimation method [14] to the case of coherent 
signals. Simulation results show that the proposed methods can ef-
fectively resolve the coherent signals and provide outstanding DOA 
estimation performance.

2. Preliminaries

2.1. General signal model

Let us consider an M-element uniform linear array (ULA) re-
ceiving the signals emitted by L narrowband far-field sources with 
unknown DOAs {θ1, · · · , θL}. The number of sensor elements is 
larger than that of signals, i.e., M > L. At the tth time instant, the 
array observation consisting of the outputs of the sensors can be 
expressed as

x(t) = [x1(t), x2(t), · · · , xM(t)]T =
L∑

l=1

a(θl)sl(t) + n(t)

= As(t) + n(t)

(1)

where A = [a(θ1), a(θ2), · · · , a(θL)] ∈ C
M×L denotes the steering 

matrix and a(θ) ∈ C
M denotes the steering vector as

a(θ) = [1, e j 2πd
λ

sin θ , · · · , e j 2πd
λ

(M−1) sin θ ]T (2)

where (·)T denotes the transpose operation, d and λ are the 
inter-element spacing and carrier wavelength, respectively. s(t) =
[s1(t), · · · , sL(t)]T ∈C

L and n(t) = [n1(t), · · · ,nM(t)]T ∈ C
M denote 

the signal and noise vectors, respectively, which are assumed to be 
uncorrelated. The signal covariance matrix is given by

P = E{s(t)sH (t)} ∈C
L×L (3)

where E{·} and (·)H represent the expectation and Hermitian 
transpose, respectively. The noise is nonuniform with covariance 
matrix

Q = E{n(t)nH (t)} = diag{σσσ } ∈R
M×M (4)

where σσσ = [σ 2
1 , σ 2

2 , · · · , σ 2
M ]T , σ 2

m is the noise variance of the mth 
sensor element, and diag{·} stands for a diagonal matrix composed 
of the bracketed elements. As a result, the array covariance matrix 
can be expressed as

R = E{x(t)xH (t)} = R0 + Q (5)

where R0 � APAH denotes the noise-free covariance matrix. In 
practice, R can be estimated as R̂ = 1

N

∑ N
t=1x(t)xH (t) with N snap-

shots.

2.2. Coherent signals model

Assuming that the signals are coherent and s1(t) is the ref-
erence signal, the signal vector can thus be expressed as s(t) =
[s1(t), α2s1(t), · · · , αL s1(t)]T , where αl , l = 2, · · · , L, are nonzero 
complex-valued constants [17,18]. As a result, we have

x(t) = s1(t)
L∑

l=1

αla(θl) + n(t) = Aαααs1(t) + n(t) (6)

where ααα = [α1, α2, · · · , αM ]T with α1 = 1. Therefore, let us define 
a0 � Aααα and p � E{s1(t)s∗

1(t)}, where (·)∗ denotes the complex 
conjugate operator, then the array covariance matrix is expressed 
as

R = E{x(t)xH (t)} = pa0aH
0 + Q = bbH + Q (7)

where b = p1/2a0. In this case, the noise-free covariance matrix is 
given by R0 = bbH . Since rank{R0} = 1, b can be interpreted as the 
scaled principal eigenvector of R0.

2.3. Generalized covariance differencing (GCD) algorithm

Let us divide the array into P overlapping subarrays, each of 
which has M̃ (where M̃ ≥ L + 1) sensor elements, then we have 
P = M − M̃ + 1. For forward spatial smoothing, the kth subarray 
consists of the kth to (k + M̃ − 1)th sensor elements, and the cor-
responding output vector is given by

xk(t) = [xk(t), xk+1(t), · · · , xk+M̃−1(t)]T = Fkx(t) ∈C
M̃ (8)

where Fk = [0M̃×(k−1)
IM̃ 0M̃×(M−M̃−k+1)

] ∈ R
M̃×M is a selection 

matrix with IM̃ being the M̃ × M̃ identity matrix. The array covari-
ance matrix associated with this subarray can thus be expressed 
as

R f
k = E{xk(t)xH

k (t)} = FkRFH
k ∈C

M̃×M̃ . (9)

As a result, the forward spatial smoothed covariance matrix is ob-
tained as

R f = 1

P

P∑
k=1

R f
k = 1

P

P∑
k=1

FkRFH
k . (10)

For backward spatial smoothing, the sensor elements are num-
bered reversely, hence, the kth subarray consists of the (k +
M̃ − 1)th to kth sensor elements, and the complex conjugate of 
the output vector is given by

yk(t) = FkJx∗(t) ∈ C
M̃ (11)

where J ∈ R
M×M denotes an exchange matrix with ones on the 

anti-diagonal and zeros elsewhere. Thus, we have

Rb
k = E{yk(t)yH

k } = FkJR∗JFH
k (12)

and the backward spatial smoothed covariance matrix is computed 
as

Rb = 1

P

P∑
k=1

Rb
k = 1

P

P∑
k=1

FkJR∗JFH
k . (13)

Therefore, the forward/backward spatial smoothed covariance ma-
trix R f b can be obtained as

R f b = 1

2
(R f + Rb) = 1

2P

P∑
k=1

Fk(R + JR∗J)FH
k . (14)
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