0 N O s W N =

D OO OO O U U oo o g MDD DD DB DB DB DB DB W W W WOOOWWWWWNNDNDDNDMNDNDNDDNDNDND =S =SS dd
O A WN =4 O © 0N O O & WN = O © 0N O O B WOWN - O © 0N OO & ON = O © 0N OO B WN -+ O © 0N O WM = O ©

JID:YDSPR AID:2066 /FLA

[m5G; v1.195; Prn:12/01/2017; 14:46] P.1 (1-14)

Digital Signal Processing eee (eeee) eee—see

Contents lists available at ScienceDirect % sI]_igilall
ignal
?(%cessing

Digital Signal Processing

www.elsevier.com/locate/dsp

Incoherent dictionary learning with log-regularizer based on proximal

operators

Zhenni Li**, Shuxue Ding?, Takafumi Hayashib, Yujie Li€

a School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu City, Fukushima 965-8580, Japan
b Graduate School of Science and Technology, Niigata University, Niigata City, Niigata, 950-2181, Japan
¢ Artificial Intelligence Center, AIST, Tsukuba, Ibaraki 305-8560, Japan

ARTICLE INFO

ABSTRACT

Article history:
Available online xxxx

Keywords:

Dictionary learning
Coherence
log-regularizer
Proximal operator
Sparse representation

In this study, we propose a novel dictionary learning algorithm with the log-regularizer and simultane-
ously with the coherence penalty based on proximal operators. Our proposed algorithm simply employs
a decomposition scheme and alternating optimization, which transforms the overall problem into a set of
single-vector variable subproblems, with either one dictionary atom or one coefficient vector. Although
the subproblems are still nonsmooth and even nonconvex, remarkably they can be solved by proximal
operators, and the closed-form solutions of the dictionary atoms and the coefficient vectors are obtained
directly and explicitly. To the best of our knowledge, no previous studies of dictionary learning have
applied proximal operators to sparse coding with the log-regularizer and simultaneously to dictionary up-
dating with the coherence penalty. According to our analysis and simulation study, the main advantages
of the proposed algorithm are its greater ability of recovering the dictionary and its faster convergence
for reaching the values of the dictionary recovery ratios than state-of-the-art algorithms. In addition, for
real-world applications, our proposed algorithm can obtain good performances on audio data and image

classification.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Sparse representation is a significantly important model for sig-
nal and image processing, which has been studied theoretically
and practically [1-5]. A basic assumption to apply this model is
that a natural signal y € R™ can be sparsely represented or approx-
imated by a linear combination of a small number of elementary
components, called atoms, which are chosen from an overcomplete
dictionary W € R™*", Here overcomplete means that the number r
of atoms is greater than the dimension m of the atom. The model
can be described as:

y~Wh, hwithsnonzero elements, (1)

where h € R" is a sparse representation of y and s (s <r) is the
sparsity of h. Each column of W is one atom. The atoms corre-
sponding to the s nonzero elements of h are used to synthesize
the signal y via their linear combination.

A key problem related to sparse representation is the choice of
the dictionary employed to decompose the signals of interest in an
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efficient manner. A simple approach is to consider predefined dic-
tionaries, such as the discrete cosine transform (DCT) and wavelets
[6]. Another approach is to use an adaptive dictionary which is
learned from the signals that need to be represented, resulting in
better matches to the contents of the signals. This problem leads
to the issue of dictionary learning. Solving a dictionary learning
problem is usually established as an optimization process involv-
ing a serious of iterations between two alternative stages: sparse
coding and dictionary update as the following.

Input: the training sample data Y = [y1, ...,y ], where y € R™; ini-
tial dictionary W(© ¢ R™*",
Procedure: Initialize t = 0, and repeat until convergence:

1) Sparse coding stage: The sparse representation of y are often
found by,

min ¢ (h) = ly—W®Ohn|3 st [[hp<s, (2)

where | - || is so called ¢P-norm (typically p € [0, 1]), which con-
strains the sparsity. When p =0, || - |lo is the so-called ¢°-norm,
which counts the number of nonzero elements. When p=1, | - |1
is the so-called ¢!-norm. The aforementioned optimization task
can be easily transformed as follows,

min ¢ (h) = ly —WOh[3 + 2 | h |}, 3)
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where A > 0 is a regularization parameter. Thus, the solution to
sparse coding becomes the ¢P-regularized optimization problem.
An alternative to minimizing (3) individually on each vector is to
find a joint sparse representation of the matrix Y by employing a
sparsity measure in the matrix form. Then the optimization prob-
lem can be formulated as,

min ¢ (H) = IY —WOHZ + 4 | H |5, (4)

where H € R™*! is also called the coefficient matrix. | - || is the
Frobenius norm.

2) Dictionary update stage: For the obtained h® or H®, update
W® such that

min ¢ (W) = [ly — Wh|I3, (5)
or
ming (W) = |[Y —WH®O 2. (6)

The constraints might be imposed on W to avoid a trivial result
or scale ambiguity. Dictionaries with fixed column norm or fixed
Frobenius norm have been used in different papers [7,8].

3) increment t =t + 1.

Many approaches have been proposed for dictionary learning
[2,8-13]. K-SVD [8] and MOD [9] are classical and successful dic-
tionary learning approaches that use the ¢°-norm as sparsity con-
straint. They are both solved using orthogonal matching pursuit
(OMP) [14] for the ¢9-norm. OMP is a greedy algorithm that can
find a sufficiently sparse representation, but this algorithm is not
suitable for high-dimensional problems. The difference between
K-SVD and MOD occurs in the dictionary update stage. MOD up-
dates the overall set of atoms simultaneously by optimizing a least
squares problem, but the convergence could not be guaranteed.
By contrast, K-SVD employs singular value decomposition (SVD)
to update the atoms one by one, which can learn a better dictio-
nary and improve the convergence. However, SVD is computation-
ally expensive. Bao et al. [15] have proposed to use the proximal
gradient method for dictionary learning with the ¢°-norm as spar-
sity regularization, which improves the computational complexity
compared to K-SVD. However, the proximal gradient method is es-
sentially a gradient-based method which requires more iterations
to converge.

As a convex relaxation of the ¢°-norm, the ¢!'-norm has
been widely used in many dictionary learning methods to im-
prove the computational feasibility and efficiency of sparse coding.
Yaghoobi [7] has proposed the dictionary learning algorithm with
the ¢!-norm based on the majorization method, which has been
proven to be faster than K-SVD. Rakotomamonjy [12] has devel-
oped an algorithm called Dir with the ¢!-norm as the sparsity
regularizer, which simultaneously optimizes the dictionary and the
coefficient matrix in one stage based on a nonconvex proximal
splitting framework, instead of alternating optimization. However,
Dir is an extension of the gradient-based method which has slow
convergence.

As far as we know, the good performance of sparse representa-
tion in various recognition tasks requires imposing some additional
constraints on the dictionary [16-18]. One of such essential dictio-
nary properties is the coherence between atoms. The coherence
defined as the penalty term of || WW —1I ||z imposed on the ap-
proximation error is studied in [16]. However, the dictionary is
updated by the SVD method, which is costly. In addition, INK-SVD
[17] uses the peak coherence to control the maximal correlation
of different atoms in the dictionary. However, the corresponding
problem is difficult to be optimized directly, since it becomes a
min-max problem. An additional step after updating the dictionary
is required to constrain the peak coherence of the dictionary, lead-
ing to increasing the complexity of the algorithm.

1.1. Motivation and contributions

In general, the ¢%-norm and ¢'-norm are used as sparsity con-
straints. The ¢'-norm has special significance because it is the
convex proxy for sparsity and thus the corresponding optimization
is relatively easy to be solved. Recently, the log-regularizer, which
promotes sparsity more strongly and yields more accurate results
in many sparse signal estimation and reconstruction problems than
the ¢!-norm, has been proposed as sparsity constraint [19-21].
Our previous work [22] has studied dictionary learning with the
log-regularizer for sparsity. The proximal operator was employed
to obtain the closed-form solution of the coefficient vector directly
and exactly. While the subproblems with respects to the dictio-
nary atoms are quadratic and univariate functions, which are easy
to be solved in the closed form. The log-regularized problem is
nonconvex and nonsmooth. The corresponding optimal problem is
complex. However, it can lead to further sparsity compared to the
¢1-norm, thereby resulting in superior performance, and it ensures
that a lower approximation error is obtained, which is why it is
attracting much attention.

In this study, we address the problem of learning an overcom-
plete dictionary with the log-regularizer for sparsity. Moreover, we
propose to impose the ¢!'-norm based term to the cost function
as a penalty to control the degree of coherence in the dictionary,
which is different from that of state-of-the-art algorithms. Hence,
we propose a novel cost function, which is constructed by min-
imizing the approximation error with the log-regularizer on the
coefficient matrix and with the coherence penalty on the dictio-
nary atoms. Unfortunately, the overall problem is not only noncon-
vex but also nonsmooth due to the log-regularizer. State-of-the-art
algorithms [8,9,12,15], different sparsity constraints imposed, are
not suitable for our problem.

To solve the problem efficiently and explicitly, we propose a
novel and fast algorithm which is effective as well as efficient,
where it is crucial to handle nonconvexity and nonsmoothness
of the problem in the procedure. We focus on single-vector vari-
able problems instead of the overall problem with respect to the
whole matrix. Hence, the overall problem can be transformed into
a series of subproblems, each of which is with respect to either
one dictionary atom or one coefficient vector. However, the sub-
problem with respect to the coefficient vector is nonsmooth and
still nonconvex due to the log-regularizer. To our best knowledge,
the proximal operator [23,24] can be treated as a powerful tool
for solving nonsmooth and even nonconvex problem. We employ
proximal operator to solve the subproblems with respect to the
coefficient vectors and moreover the closed-form solutions of the
subproblems can be obtained directly. In addition, the subprob-
lems with respect to the dictionary atoms are also nonsmooth due
to the coherence penalty. We can also apply proximal operator [13]
to these problems and thus the closed-form solutions of the dic-
tionary atoms are obtained explicitly. Hence, the overall problem
can be solved efficiently and rapidly based on proximal operators,
which we refer to as the proximal dictionary learning algorithm
(PDLA). PDLA forces the coefficients to be as sparse as possible
while simultaneously forcing the atoms of the dictionary to be as
incoherent as possible.

We summarize the main contributions of this study as follows.

o We use the log-regularizer for sparsity in dictionary learning
because it can induce sparsity strongly and ensure obtaining the
low approximation errors. The proximal operator has been used to
solve the signals recovery problem with the log-regularizer, where
there is one unknown variable. To the best of our knowledge, there
have been no similar treatments for dictionary learning problem
where there are two unknown variables. Based on a decomposi-
tion scheme and alternating optimization, we transform the overall
problem into a set of minimizations of the single-vector variable
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