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The MUltiple SIgnal Classification (MUSIC) estimator has been widely studied for a long time for its high 
resolution capability in the domain of the direction of arrival (DOA) estimation, with the sources assumed 
to be point. However, when the actual sources are spatially distributed with angular dispersion, the 
performance of the conventional MUSIC is degraded. In this paper, the impact of the array geometry on 
the DOA estimation of spatially distributed sources impinging on a sensor array is considered. Taking into 
account a coherently distributed source model, we establish closed-form expressions of the MUSIC-based 
DOA estimation error as a function of the positions of the array sensors in the presence of model errors 
due to the angular dispersion of the signal sources. The impact of the array geometry is studied and 
particular array designs are proposed to make DOA estimation more robust to source dispersion. The 
analytical results are validated by numerical simulations.1

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The DOA estimation based on snapshots received on a sensor 
array has been widely studied with plenty of methods [2]. Among 
these methods, the MUltiple SIgnal Classification (MUSIC) [3] is fa-
mous for its high resolution in the case of point sources. However, 
in many applications, such as acoustic source imaging [4] and mo-
bile channel communication [5], where angular dispersion of the 
sources up to 10◦ may occur, the physical sources can no longer 
be considered as points. In this case the performances of the DOA 
estimation obtained by the conventional MUSIC are degraded, and 
a spatially distributed model of the sources would be more appro-
priate.

The models for spatially distributed sources have been classi-
fied into two types, namely incoherently distributed (ID) sources 
and coherently distributed (CD) sources [6]. On one hand, for ID 
sources, signals coming from different points of the same dis-
tributed source can be considered uncorrelated. On the other hand, 
in the scenario of CD sources, the received signal components 
are delayed and scaled replicas from different points of the same 
one [6]. For CD sources, the performances of MUSIC with dis-
cretely distributed sources and continuously distributed sources 
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have been investigated in [7], and [8], respectively. As expected, 
due to the angular dispersion the mismatch between the steer-
ing vector model of MUSIC and the actual steering vectors of the 
sources causes estimation errors. Plenty methods such as the joint 
estimation of both the DOA and the angular dispersion parame-
ter [6,9,10] have been proposed to solve these problems. However, 
these methods require a high computational burden or a knowl-
edge of the shape of the source angular distribution for the model, 
which motivates us to rather keep the conventional point-source 
MUSIC for the DOA estimation and seek other ways to improve the 
performances as, for example, the optimization of the array geom-
etry.

The array geometry effect on the DOA estimation has been 
studied in plenty of publications and in different contexts. The uni-
form linear array (ULA) is the simplest. However, a more complex 
geometry can lead to better performance. Optimal array geome-
tries have been designed to reach isotropic and/or optimal per-
formance based on the Cramér–Rao bound (CRB) criterion (e.g.: 
[11–13]), the lower bound of the mean square error (MSE) can be 
uniform for all the possible DOAs, or the inferior bound of the MSE 
of the DOA in the elevational and horizontal direction can be de-
coupled. More recently, based on the spatial aliasing phenomenon, 
a class of non-uniform array geometries composed of two or more 
uniform linear arrays (ULAs) with different inter-element spacing 
has been used to reduce the computational burden of the Maxi-
mum Likelihood (ML) estimator [14]. Also, many techniques have 
been applied in the sparsity array design or large-scale broad-
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band array to reduce the number of elements in an array, to of-
fer a lower cost, power consumption, and heat dissipation (e.g.: 
[15–17]).

In our work, we focus on the impact of the array geometry 
on the performance of the MUSIC estimator with the CD source 
model, in the presence of errors due to modeling mismatch of 
source dispersion. Let us first briefly review our work in [8] and 
[1]. In [8], the point source MUSIC has been extended into CD-
MUSIC (coherent source MUSIC), the first order Taylor approxima-
tion DOA estimation bias is proposed in the case that the steering 
vectors in the model and of the actual sources are mismatched. 
In [1] we make use of the theoretical estimation bias expression 
in [8], and express the DOA estimation bias as a function of the 
sensor positions. Impacts of particular array geometries on the es-
timator performances are studied in the scenario of single source 
and multiple sources, respectively. In this paper, besides the re-
sults in the conference papers, our contributions consist of: firstly, 
a general condition for canceling the DOA estimation bias in the 
case of one source is derived; secondly, the condition for canceling 
the cross terms of the DOA and the angular dispersion parameter 
in Cramér–Rao bound in the case of one source is derived; thirdly, 
for the results concerning UCA in the case of two sources in [1], 
the calculation details are given in 6.1.

The organization of this paper is as follows. The signal model 
and a brief recall of MUSIC are given in section 2. The impact of 
array geometry on the performance of MUSIC and on the crossed 
terms of the CRB are studied in section 4. Particular geometry de-
signs are studied in section 5. UCA for the case of two sources is
studied in section 6. Finally, conclusions are given in section 7.

2. Signal model

Let us consider q spatially CD far-field narrow-band sources im-
pinging on an array of M sensors. The sources arrive from the DOA 
θ1, ..., θq , and the position of the m-th sensor is given by the po-
lar coordinates ρm and αm . Without loss of generality, the signals 
and the sensors are assumed to be in the same plane, as shown 
in Fig. 1. The q source signals and the M signals received by the 
array at moment t are denoted by s(t) = [s1(t), . . . , sq(t)]T and 
y(t) = [y1(t), . . . , yM(t)]T , respectively. In the case of CD sources, 
it is common to exploit the model proposed in [6] in order to ex-
press the received signal:

y(t) = C(θ)s(t) + n(t), (1)

where n(t) ∈ C
M×1 represents the complex Gaussian distributed 

additive noise, C(θ) = [ch1(θ1), . . . , chq (θq)] ∈ C
M×q is the array 

steering matrix composed of q steering vectors chi (θ) that can be 
written by:

chi (θi) =
π
2∫

− π
2

a(θi + φ)hi(φ)dφ, (2)

where i = 1 . . .q, and a(θ) is the steering vector for a point source, 
which can be given by:

a(θi) =
[

e− j2π
ρ1
λ

cos(θi−α1), . . . , e− j2π
ρM
λ

cos(θi−αM )
]T

, (3)

where λ is the wavelength, and [·]T is the transpose operation.
The functions hi(φ) are introduced in (2) to describe the angu-

lar spread distribution (for instance, Uniform and Gaussian distri-
butions). The source signals and the additive noise are considered 
to be complex centered Gaussian independent random variables. 
Assuming that signals and noises are uncorrelated and the sources 
are uncorrelated with each other, the correlation matrix is given 
by:

Fig. 1. Planar array and source DOAs.

R = E[yyH ] = CRsCH + σ 2
b I, (4)

where E[.] is the expectation operator, Rs and σ 2
b are the source 

covariance matrix and the noise variance, respectively.
Under the hypothesis that q < M and Rs and C are not rank 

deficient, it is well known that the decomposition of R into eigen-
values λm and eigenvectors em is as follows:

R =
M∑

m=1

λmemem = U	sUH + σ 2
b VVH , (5)

where U = [e1, . . . , eq] spans the signal subspace defined by the 
columns of C, V = [eq+1, . . . , eM ] spans the noise subspace defined 
as the orthogonal complement of U, and 	s = diag{λ1, . . . , λq}.

3. MUSIC estimator and performances

The MUSIC [3] method makes use of the orthogonal property 
of the subspaces spanned by C(θ) and V to estimate the DOAs θi . 
In practice it is difficult to know exactly the angular dispersion of 
the actual sources, consequently, the steering vector model of the 
point source a(θ) is used here instead of chi (θ) to estimate the 
value of θ :

θ̂i = argmax
θ

1

‖aH (θ)V‖2
. (6)

Here, we assume that the number of snapshots is large enough 
such that the estimation error of the noise subspace can be ne-
glected and the DOA estimation error comes mainly from the 
model error, it is to say, the mismatch of the angular dispersion 
parameter between the model of the MUSIC estimator a(θ) and 
the actual source chi (θi). We recall here the standard analysis in 
order to express the estimation error 
θi = θ̂i − θi , θ̂i should sat-
isfy that the first derivative of denominator in (6) is null:

∂a(θ)H VVH a(θ)

∂θ

∣∣∣
θ̂i

= 0, (7)

which gives:

2Re{ȧ(θ̂i)
H VVH a(θ̂i)} = 0, (8)

where ȧ(θ̂i) = ∂a(θ)
∂θ

∣∣∣
θ̂i

.

Assuming that, θ̂i is not far away from θi , we make the first 
order approximation of Taylor:

a(θ̂i) ≈ a(θi) + 
θi ȧ(θi), (9)

and:

ȧ(θ̂i) ≈ ȧ(θi) + 
θi ä(θi), (10)

where ä(θi) = ∂ ȧ(θ)
∂θ

∣∣∣
θi

.
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