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Due to the advances on electronics, applications of antenna array signal processing are becoming more 
frequent. When employing antenna arrays for beamforming, the signal to interference and noise ratio 
(SINR) should be assessed. Many factors can affect the SINR such as the array element positioning 
error and the direction of arrival (DOA) estimation error. In these cases, the assessment is traditionally 
performed via the SINR average obtained using Monte Carlo (MC) simulations. However, this approach 
requires a great amount of realizations that demand a high computational effort and processing time 
due to its slow convergence. In this paper, we propose a low complexity performance assessment of the 
average SINR via unscented transformation. Compared to MC simulations, our proposed method requires 
only a few trials and has a negligible computational complexity, yet giving a comparable SINR when 
the DOA estimation is perturbed. When the antenna elements positioning is perturbed, a multivariate 
scenario arises. For multivariate scenario the proposed scheme has an exponential increase in complexity, 
therefore, still being advantageous for a small number of antennas.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Applications such as speech and audio acquisition [1,2], wire-
less communications [3] and RADAR [4] make use of array signal 
processing in order to enhance their capabilities. One of the most 
common uses of antenna arrays is spatial filtering by the use of 
beamformers [5]. However, idealistic assumptions such as a known 
direction of arrival (DOA) of the desired signal or perfectly spaced 
array elements are usually made [6]. Therefore, a performance as-
sessment in the presence of deviations should be considered for 
practical implementations.

Geometry based beamformers, e.g. delay and sum (DS), gener-
alized sidelobe cancellers (GSC) and minimum variance distortion-
less response (MVDR), take one or more DOAs as input parameters 
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of the associated optimization problem. Though, DOA estimation 
is always prone to a certain degree of error. Moreover, the posi-
tioning of the antenna elements is not always perfectly known and 
it may affect the beamformer’s quality. In this paper, the quality 
is measured as the average of the achieved signal to interference 
and noise ratio (SINR). The average is important, since the ran-
dom nature of these perturbations will lead to random SINR values 
that may cause inconclusive results. For example, a simulation in a 
more favorable scenario may result in an SINR that is lower than 
that of a simulation in a less favorable one. However, these values 
vary around a mean and computing the average gives the system 
designer an overall SINR, i.e. which SINR level is expected when 
the system is subject to a certain degree of error.

The Monte Carlo (MC) method [7] is a commonly used simula-
tion technique for the computation of the average SINR [8] due to 
its simplicity and easiness of implementation. However, it requires 
a large number of trials [9] to converge to a satisfactory result, im-
plying a long simulation time. Currently, performance assessment 
of embedded systems takes 30% of the development time and it 
could increase to 70% [10]. Therefore, improving the efficiency of 
performance assessment tools implies reducing production costs 
and delivering new solutions faster to the market.
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Previous works derive analytical expressions to assess the sys-
tem’s quality by using first order expansions of the perturbed 
parameters [11,12]. These analytical expressions evaluate the per-
turbation due to noise and are exact for high signal to noise ratio 
(SNR) values, but they do not present a good fit for low SNR cases. 
In this paper, we study the effect of other type of perturbations, 
more precisely the DOA estimation error and antenna element po-
sitioning error on the SINR. We show that, in these cases, the 
computation of such analytical expressions is hard or not prac-
tical and we propose the use of the unscented transformation 
(UT) to numerically evaluate the SINR. The UT maps a continuous 
probability distribution into a discrete one with the same statis-
tical moments [13]. When a non-linear function is applied to the 
mapped distribution, in our case the SINR function, the results give 
us a good fit in comparison to the traditional MC approach, yet 
with a negligible computational time for univariate perturbation 
models. When the perturbation is multivariate, e.g. error in the 
position of each antenna element, the complexity grows exponen-
tially with the number of antennas. Therefore, the complexity is 
still lower than the MC method’s complexity for a small number 
of antennas and greater for a large number of antennas. In order 
to alleviate the effect of the array spacing perturbation using the 
UT, the reader is referred to [14].

In this work, two perturbations are considered, a DOA es-
timation error and array element positioning error. We assume 
uncorrelated and equipowered sources so that the source signal 
covariance is an identity matrix and the covariance matrix can 
be computed as explained in Section 4. The evaluation of these 
perturbations gives raise to a univariate and a multivariate UT, 
respectively. For the sake of demonstration, one type of pertur-
bation is considered for each case. In future work, the UT may 
also be applied for other types of perturbations such as frequency 
shift, mutual coupling, amplitude error and phase error. Also, other 
integration methods such as the quadrature and cubature trans-
forms [15] showed better results than the UT for filtering purposes. 
Even though the quadrature and cubature transforms might also 
be considered for sensor array performance assessment, we regard 
them as future work and focus on the simplicity and ease of im-
plementation of the UT.

The remainder of this paper is divided as follows. Section 2
shows the data model containing the considered perturbations. In 
Section 3, we overview basic concepts of the UT. In Section 4, we 
propose the performance assessment of a beamformer using the 
UT. Section 5 presents the simulations results. Finally, Section 6
draws the conclusions of this work.

2. Data model

We start with the received signal model of an ideal uniform 
linear array (ULA) containing M antenna elements

x(t) =
∑

i

a(θi)si(t) + v(t) ∈C
M×1, (1)

where a(θi) is the steering vector, θi is the DOA azimuth of i-th 
source signal si(t) and v(t) is the additive noise term. Since we are 
dealing with a ULA, the steering vector contains the phase delays 
am,i = e j2πμi , where μi = (m −1) d

λ
cos θi , m is the antenna element 

index and d is the inter-element spacing in wavelengths. If d is 
given in wavelengths, the wavelength can be dropped from the 
phase delay μi .

Let us consider the case where DOA and element positioning 
errors are present as depicted in Fig. 1.

Fig. 1 shows that a plane wavefront reaches the ULA with a 
DOA angle θi and is subject to an additive deviation represented 
by the Gaussian distributed random variable � ∼ N (0, σ 2

θ ). There-

Fig. 1. Illustration of a plane wavefront impinging on an antenna array containing 
DOA and element positioning errors.

fore, the received signal in the presence of DOA estimation error 
becomes:

x(�)(t) = a(�)(θ0)s0(t) +
∑
i �=0

a(θi)si(t) + v(t) ∈ C
M×1, (2)

where a(�)(θ0) = a(θ0 + �) is the steering vector perturbed by a 
random variable � and the signal of interest (SOI) corresponds to 
the i = 0 source signal. Note that (2) models the DOA estimation 
error as a physical change in the signal’s direction.

Also, in Fig. 1, the solid dots represent the antenna element po-
sitions. The first element is the reference of the Cartesian axes. The 
remaining elements are positioned at (m − 1)d along the x axis. 
Each of the elements, except the reference element, is subject to a 
positioning error in all of the 3 space dimensions x, y and z and 
are modeled by the random variables Dx , Dy and Dz , respectively.

When the three dimensions are considered, not only the az-
imuth θi of the DOA, but also its elevation φi matters. Expanding 
the phase delays for the three dimensions we obtain

μm,i = (m − 1)d cos θi cosφi +Dx,m cos θi cosφi

+Dy,m sin θi cosφi +Dz,m sinφi, (3)

where the subscript m indicates the antenna index, since the ran-
dom variables are independent with respect to each other.

The received signal for a random array positioning can be writ-
ten as

x(D)(t) =
∑

i

a(D)(θi, φi)si(t) + v(t) ∈C
M×1, (4)

where a(D)(θi, φi) = [e jμ1,i , e jμ2,i , . . . , e jμM,i ]T is the steering vec-
tor perturbed by the random vector D = [Dx,1, Dy,1, Dz,1, Dx,2,

. . . , Dz,M ].

3. Unscented transformation

The Unscented Transformation (UT) is based on the mapping of 
a continuous probability distribution into a discrete one and can 
be used to compute the moments of non-linear transformations of 
a random variable [16]. Traditionally, such moments are computed 
via MC simulations. However, this approach requires large compu-
tational efforts and, depending on the accuracy, the computational 
complexity can be prohibitive.

In this section we review the concepts of the UT. The UT for 
a single random variable is reviewed in Section 3.1 and its exten-
sion for multiple i.i.d. random variables is reviewed in Section 3.2, 
respectively.
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