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A number of tree search based methods have recently been utilized for compressive sensing signal 
reconstruction. Among these methods, a heuristic algorithm named A* orthogonal matching pursuit 
(A*OMP) follows best-first search principle and employs dynamic cost model which makes sparse 
reconstruction exceptionally excellent. Since the algorithm performance of A*OMP relies heavily on preset 
parameters in the cost model and the estimation of these preset parameters requires a large number of 
experiments, there is room for improvement in A*OMP. In this paper, an improved algorithm referred to 
as Nonlinear Regression A*OMP (NR-A*OMP) is proposed which is built on the residue trend to avoid 
the estimation procedure. This method is inspired by the fact that the residue is correlated closely 
to the measurement matrix. The residue trend reflects the characteristics of nonlinear regression with 
the increasing of sparsity K . In addition, restricted isometry property (RIP) based general conditions 
are introduced to ensure the effectiveness and practicality of the algorithm. Numerical simulations 
demonstrate the superiority of NR-A*OMP in both reconstruction rate and normalized mean squared 
error. Results indicate that the performance of NR-A*OMP can become nearly equal to or even better 
than that of A*OMP with perfect preset parameters.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Traditional approaches to capturing and reconstructing signals 
follow the Shannon/Nyquist sampling theorem, which states that 
the sampling rate must be at least twice the maximum frequency 
component presented in the signal to avoid information loss. This 
fundamental principle constitutes the basis of many other signal 
acquisition protocols which have been widely accepted in practical 
applications, including wireless communication, medical imaging, 
and so on.

In the last decade, a rapid developing theory, which goes the 
name by compressive sensing or compressed sensing [1–4] has 
provided a second choice beyond the Shannon/Nyquist law when 
extra conditions meet. With its help, sparse or compressible signals 
can be captured and represented at an extremely low sampling 
rate that falls far below the supposed sampling rate recommended 
by the Shannon/Nyquist theorem. More surprisingly, the paradigm 
suggested by compressive sensing underlies procedures for sam-
pling and compressing data simultaneously, which overcomes com-
mon wisdom in traditional data acquisition.
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Although compressive sensing seems to be a very promising 
mathematical tool to reduce both relative data storage and cal-
culation complexity, an intractable problem needs to be handled 
before it finally comes into practical application. For instance, 
the classic compressive sensing theory, which is related with a 
minimum �0-norm problem, requires an exhaustive combinatorial 
search within the framework of compressive sensing, thus result-
ing in an NP-hard problem.

To solve this problem, a variety of strategies have been emerged 
and could be mainly classified into three categories, namely greedy 
algorithms [5–9], convex optimization algorithms [10–12] and 
combinatorial algorithms [13–15]. Generally, convex optimization 
algorithms outperform combinatorial algorithms in computational 
accuracy but have the shortcoming of expensive computation. 
Greedy algorithms have merits in both of computational accu-
racy and computational complexity owing to reaching a good 
compromise between convex optimization algorithms and com-
binatorial algorithms. Moreover, greedy algorithms have some 
benefit from the high flexibility, which leads to easy integration 
with various mathematical methods to improve algorithm per-
formance effectively. For example, iterative shrinkage/thresholding 
algorithms (ISTA), as an important branch of greedy algorithms, 
developed from gradient descent method have received a consid-
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erable amount of attention in the field of medical imaging [16–18]. 
ISTA avoid computing the inverse of the high-dimensional matrix 
to improve the real-time performance compared to the other algo-
rithms.

In the line of greedy algorithms, orthogonal matching pursuit 
(OMP) [5] is the most classic and basic one that has attracted much 
attention in the research community. Although it has been proved, 
simple structure and low complexity, its reconstruction rate (RR) 
still needs to be further improved. The regularized orthogonal 
matching pursuit (ROMP) [6] is presented to partly deal with this 
problem by combining greedy algorithms with convex optimiza-
tion and its modified version termed as the compressive sampling 
matching pursuit (CoSaMP) [7], guarantees this improvement by 
employing a pruning step. However, their performances in the 
noisy scenario are far from being satisfactory. Multipath matching 
pursuit (MMP) [19] is proposed to fit for more complex situa-
tions by introducing tree search from graph theory, but it is rather 
an unsophisticated technique that explores a search tree following 
predefined orders, including Breadth-First-Search and Depth-First-
Search. Inspired by MMP, A* orthogonal matching pursuit (A*OMP) 
[20–23] employs an intelligent selection procedure according to a 
classic pathfinding method termed A* search and performs better 
accuracy and flexibility.

However, the good performance of A*OMP is at the cost of 
complex mathematical models and accurate preset parameters se-
lection based on data training. Otherwise, the degradation and de-
terioration are foreseeable. To enhance the robustness to the lack 
of a priori knowledge, we propose a novel approach referred to 
as Nonlinear Regression A*OMP (NR-A*OMP) that investigates the 
residue trend when the signal is reconstructed. For this purpose, 
we study the correlation between the residue and the measure-
ment matrix to match the desired solution to NR-A*OMP, then 
survey and provide the crucial mathematical insights underlying 
this new method.

The rest of this paper is organized as follows. In Section 2, 
the framework of compressive sensing is given, greedy algorithms 
and the semi-greed algorithm are introduced briefly. In Section 3, 
NR-A*OMP is proposed to overcome the disadvantage of the origi-
nal algorithm, including algorithmic idea, mathematical expression, 
flow chart, and the residue trend. In Section 4, the RIP condi-
tions for NR-A*OMP are presented to ensure the perfect recovery 
of sparse signals. In Section 5, numerical simulations are provided 
to demonstrate the residue trend and the effectiveness of the pro-
posed method. Finally, some concluding remarks are drawn in Sec-
tion 6.

2. Background

2.1. Compressive sensing

If a vector is sparse or, more generally, compressible in some 
basis, a condensed representation could be obtained directly. 
Through non-adaptive linear projections, the information loss 
could be ignored. Then the original signal could be reconstructed 
via an optimization method with high probability, which could be 
mathematically depicted by

y = �x (1)

where y ∈ R
M is the measurement vector, x ∈ R

N is the original 
vector, � ∈ R

M×N is the measurement matrix or called redun-
dant dictionary, the columns of � are dictionary atoms. The top 
concern we care about is the undersampled case when M < N . 
Obviously, (1) itself could not be used to recover x due to under-
determination, which could only work under the premise that vec-
tor x is K -sparse, i.e. ‖x‖0 ≤ K . More specifically, the ill-posed 
problem is radically formulated as following optimization model.

x̂ = argmin‖x‖0 s.t. y = �x (2)

Solving (2) directly is intractable as it is NP-hard. Consequently, 
many pieces of literature have been proposed to find an approxi-
mate solution to (2).

2.2. Greedy algorithms

Greedy algorithms iteratively approximate the original signal 
via residue minimization per iteration and employ an upper bound 
ε to limit the approximation error.

x̂ = argmin‖x‖0 s.t. ‖y − �x‖2 ≤ ε (3)

As the basic one in greedy algorithms, OMP selects the dictionary 
atom which has the highest inner-product with the residue at each 
iteration, then introduces orthogonal projection of the residue onto 
the selected atoms. The second procedure enhances the recon-
struction rate and speeds up the convergence. Because of simple 
implementation and low complexity, OMP has a significant impact 
on later OMP like algorithms.

2.3. Semi-greedy algorithm A*OMP

A*OMP transforms sparse signal reconstruction into a search for 
the correct index of vector x among dynamically evolving candi-
date subsets. These candidate subsets can be interpreted as differ-
ent paths in a search tree, where each node represents a dictionary 
atom in �. The search tree starts with one or more roots, builds 
up and evaluates iteratively by A* search. The cost model for A* 
search to select the path can be formally described as

f (n) = g(n) + h(n) (4)

where g(n) represents the exact cost of the path from the starting 
point to any vertex n, and h(n) represents the heuristic estimated 
cost from vertex n to the ending point. A* search balances the 
two as it moves from the starting point to the ending point. Each 
time through the main loop, it examines the vertex n that has the 
lowest f (n) [24,25]. In the default model structure, A* search com-
bines Dijkstra’s algorithm g(n) and Breadth-First-Search h(n) that 
leads to being more intelligent than the other algorithms in graph 
theory.

As the most popular choice in pathfinding, A* search and its 
dynamic cost model have gained much attention. Particularly, the 
authors of [20] not only proposed a novel semi-greedy recovery 
approach named A*OMP, but also provided several practical cost 
models to realize it, including Additive Model, Adaptive Model and 
Multiplicative Model. For the convenience of the following analysis, 
we propose a united model for A*OMP, and it can be expressed as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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where ‖r‖2 and ‖r̂‖2 denote the true residue and the estimated 
residue, respectively. δ̂(k) denotes the estimated contribution to 
the decrease of the final residue. The superscript K and l denote 
the K -th and l-th iteration respectively, while the subscript i de-
notes the i-th path.

3. Nonlinear regression A*OMP

3.1. Problem definition and idea of NR-A*OMP

As described in previous sections, an improper cost model or 
inaccurate preset parameters may cause the degradation and dete-
rioration of A*OMP. For instance, considering the l-th iteration in 
Adaptive Model, the cost model is given by
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