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In this paper, we construct a novel coarray named as the difference and sum (diff–sum) coarray by 
exploiting an improved Conjugate Augmented MUSIC (CAM) estimator, which utilizes both the temporal 
information and the spatial information. The diff–sum coarray is the union of the difference coarray and 
the sum coarray. When taking the coprime array as the array model, we find that the elements of the 
sum coarray can fill up all the holes in the difference coarray. Besides, the sum coarray contains bonus 
uniform linear array (ULA) segments which extend the consecutive range of the difference coarray. As a 
result, the consecutive lags of the diff–sum coarray are much more than those of the difference coarray. 
For analysis, we derive the hole locations and consecutive ranges of the difference set and the sum 
set, discuss the complementarity of the two sets, and provide the analytical expression of the diff–sum 
virtual aperture. Simulations verify the effectivity of the improved method and show the high DOF of the 
diff–sum coarray.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Direction-of-arrival (DOA) estimation of multiple narrowband 
signals is a major application of the antenna array [1–7]. In the 
past few decades, many high-resolution subspace-based methods 
have been proposed for direction finding, such as MUSIC [2], ES-
PRIT [8] etc. By using these conventional methods, the number of 
detectable sources impinging on a uniform linear array (ULA) with 
N sensors is at most N − 1 [9]. Detecting more sources than the 
number of sensors has been more and more attractive in recent 
years [10]. Constructing sparse arrays based on the concept of the 
coarray is a useful and important way to increase the degrees of 
freedom (DOF). In [11], the minimum redundancy array (MRA) was 
introduced for this purpose. It is a kind of sparse array whose dif-
ference coarray has no holes in it. However, there is no closed form 
expression for the MRA. As a result, the DOF for a given number 
of sensors can not be obtained as well.

To resolve these problems, several sparse arrays have been pro-
posed recently. In [12], a nested array, which can detect at most 
(N2 + 2N)

/
4 − 1 (N is even) or (N + 1)2/4 − 1 (N is odd) sources 

with only N sensors, was proposed. This structure is obtained by 
systematically nesting two ULAs. Another sparse array named the 
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coprime array was proposed in [13]. Two uniform linear subarrays, 
which share the first sensor, are used to form the sparse array. 
One is M sensors with spacing N units, and the other is N sen-
sors with spacing M units, where integers M and N are coprime. 
Coprime arrays can detect as many as O (MN) sources using only 
M + N −1 sensors. However, compared to a nested array, a coprime 
array requires more sensors to achieve the same DOF. Thus, how to 
increase the DOF of the coprime array has generated a new wave 
of interest. An extended coprime array which contains M + 2N − 1
sensors was proposed in [14]. Its difference coarray lags can reach 
consecutive integers from −MN − N + 1 to MN + N − 1, which has 
been somewhat extended with more sensors used. Authors in [15]
proposed the generalized coprime array concept with two opera-
tions. The first operation is compressing the inter-sensor spacing 
of one subarray in the coprime array, which yields a coprime ar-
ray with compressed inter-element spacing (CACIS). The second 
operation is displacing one subarray in the coprime array, which 
forms a coprime array with displaced subarrays (CADiS). Both the 
CACIS and CADiS can achieve a high number of DOF. In addition to 
optimizing the design of the coprime array configuration, several 
novel methods have also been proposed to increase the DOF of the 
coprime array. In [16], a sparsity enforced recovery technique for 
the coprime array was proposed. Taking the off-grid DOAs into ac-
count, the method can construct a larger difference coarray than 
that in [14] by utilizing the grid offset vector. However, the closed 
form expression for the DOF has not been summarized. In [17], 
a novel coarray interpolation method for the coprime array was 
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proposed. This method utilizes nuclear norm minimization to in-
terpolate the missing samples or holes and is capable of achieving 
a high number of DOF. However, the actual freedom is still gov-
erned by the number of unique virtual sensors in the nonuniform 
difference coarray. Although all the geometries and methods men-
tioned above can correctly estimate more sources than the number 
of sensors, only the difference coarray is considered. The sum coar-
ray cannot be utilized effectively.

Utilizing the difference and sum coarrays jointly to perform 
DOA estimation can further increase the DOF. The sum coarray 
usually arises as the virtual array in active sensing. With the trans-
mitters illuminating the field of view and the receivers detecting 
the reflections from the targets, the received data can be con-
sidered as observations from the sum coarray. A sparsity-based 
method using active nonuniform arrays was proposed in [18] for 
extended aperture with both sum and difference coarrays. The 
vectorized covariance matrix of the sum coarray observations em-
ulates the equivalent signals received from the difference coarray 
of the sum coarray. But one weakness of the method is that the 
sum coarray cannot perform sufficiently due to different transmit-
ter and receiver arrays. In [19], a modified minimum redundancy 
monostatic multiple-input multiple-output (MIMO) configuration 
was proposed. As the transmitter and receiver arrays are identical, 
both the difference coarray and sum coarray can be used suffi-
ciently. However, these methods constructing the sum coarray are 
restricted to active arrays. Therefore, proposing a novel method 
which can utilize the passive arrays to construct the difference and 
sum coarrays is significant.

In this paper, we exploit an improved Conjugate Augmented 
MUSIC (CAM) estimator [20], which we name as Vectorized Conju-
gate Augmented MUSIC (VCAM), to perform DOA estimation using 
passive arrays. By utilizing both the temporal information and the 
spatial information, we construct a conjugate augmented correla-
tion vector based on the second-order statistics. Instead of calcu-
lating the fourth-order (FO) cumulants in [20], we vectorize the 
covariance matrix of the conjugate augmented correlation vector 
and get an equivalent received signal using the concept of Khatri–
Rao (KR) product. The resulting coarray, which is named as the 
difference and sum (diff–sum) coarray in this paper, comprises not 
only the difference set but also the sum set. For the coprime array, 
it is at last verified that the elements of the sum coarray can fill 
up all the holes in the difference coarray. Besides, the sum coar-
ray contains bonus ULA segments outside the consecutive range 
of the difference coarray. As a result, the virtual array can achieve 
much higher DOF than the difference coarray obtained by vector-
ized MUSIC [12]. Furthermore, its virtual aperture is more than 
twice the physical aperture, which will contribute to the decrease 
of the array size. In particular, we analyze the performance of the 
consisting sets of the diff–sum coarray and discuss the relationship 
between them. Based on the complementarity of the difference set 
and sum set, we give the expressions of the diff–sum coarray aper-
ture for quantitative evaluation. Simulations verify the effectivity of 
the improved method.

The rest of the paper is organized as follows. In section 2, we 
first review the data model and the coprime array configuration. In 
section 3, we present the VCAM algorithm to acquire the diff–sum 
coarray. Then, in section 4, we derive the properties of the con-
sisting difference coarray, the consisting sum coarray and the final 
diff–sum virtual array for the coprime geometry. Simulation results 
are provided in section 5 to numerically compare the performance 
of the nested array, the CACIS and the CADiS with vectorized MU-
SIC and the coprime array with VCAM method. Section 6 concludes 
the paper.

Notations. In this paper, vectors are denoted by italic boldface 
lowercase letters, e.g., a. Matrices are denoted by italic boldface 
capital letters, e.g., A. (.)H denotes conjugate transpose, whereas 

Fig. 1. The prototype coprime array.

(.)T and (.)∗ respectively denote transpose and conjugation. vec(.)
is used to denote vectorizing operation and the symbol ⊗ denotes 
the left Kronecker product.

2. System model

Denote d = {d1, . . . , dP } as the positions of the array sensors 
with the first sensor as the reference, i.e., d1 = 0. K uncorrelated 
narrowband plane wave sources impinge on the array from direc-
tions {θ1, . . . , θK } with powers {σ 2

i , i = 1, 2, . . . , K }. According to 
[20], we denote the ith source signal as si(t) = uie j(ωc+ωi)t , where 
ωc is the carrier frequency, ui is the deterministic complex ampli-
tude and ωi is a small frequency offset. For different source signals, 
the frequency offsets are respectively different. After demodulation 
to IF, the ith signal becomes si(t) = uie jωi t . The additive noise is 
assumed to be white Gaussian with zero mean and variance σ 2

n , 
which is uncorrelated with the sources. Denote λ as the wave-
length of the carrier. Then, the received signal can be expressed 
as

x(t) =
K∑

k=1

a(θk)sk(t) + n(t) = As(t) + n(t), (1)

where A = [a(θ1), a(θ2), . . . , a(θK )] with

a(θk) = [1, e j2πd2 sin(θk)/λ, . . . , e j2πdP sin(θk)/λ]T . (2)

s(t) = [s1(t), s2(t), . . . , sK (t)]T and n(t) = [n1(t),n2(t), . . . ,nP (t)]T

are source vector and noise vector, respectively. Since the element 
in the ith row and jth column of the covariance matrix

Rxx = E[x(t)xH (t)] (3)

corresponds to the equivalent signal received from the sensor lo-
cated at di − d j , vectorizing Rxx can obtain the equivalent received 
signal at the difference coarray. It’s noted that, in practice, the co-
variance matrix Rxx is estimated from a finite (say, Np ) snapshots 
as

Rxx = 1

Np

N p∑
a=1

x(a�t)xH (a�t),

where �t is the sampling interval for snapshots. �t is set to satisfy 
the sampling theory.

The coprime array, as shown in Fig. 1, is the union of two 
uniform linear subarrays [13]. One is of M sensors with the inter-
sensor spacing of N units. The other is of N sensors with the 
inter-sensor spacing of M units. M and N are coprime integers. 
Assume that M < N . Then, the number of sensors in the coprime 
array is P = M + N −1. Denote d as the unit inter-element spacing. 
The array sensors are located at

Lprototype = {Nmd |0 ≤ m ≤ M − 1 } ∪ {Mnd |0 ≤ n ≤ N − 1}. (4)
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