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Uncertainty principles of the linear canonical transform (LCT) are of importance in optics and signal 
processing. Thanks to the positive definite property of the spread matrix for arbitrary signals, this study 
discusses the lower bound of uncertainty product of complex signals in two LCT domains through using 
this matrix’s rotation orthogonal decomposition mainly. We formulate two kinds of lower bounds, which 
are tighter than the existing ones proposed respectively by Xu et al and Dang et al. We obtain sufficient 
and necessary conditions that give rise to these sharper results truly, and propose quantitative indexes 
to analyze the difference with the existing bounds. Then we reduce the derived uncertainty principle 
inequalities to the time and LCT domains and to the two fractional Fourier transform (FRFT) domains. 
Examples and numerical simulations are also carried out to verify the correctness of the theoretical 
analyses. Finally, we discuss the new proposals’ application in the estimation of the effective bandwidth 
encountered in optical systems, time–frequency analysis, and affine modulation schemes.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The classical Heisenberg’s uncertainty principle is of importance 
in mathematics (harmonic analysis [1,2], etc.), physics (quantum 
mechanics [3], etc.), and engineering (time–frequency analysis [4], 
etc.). It is one of the most fundamental results in the field of sig-
nal processing, indicating that the product of a signal’s spreads 
in the time domain and frequency domain possesses a lower 
bound. For simplicity, we focus on a signal f (t) whose energy is 
1 (
∫ +∞
−∞ | f (t)|2dt = ∫ +∞

−∞ |F (ω)|2dω = 1, where F (ω) denotes the 
signal’s Fourier transform (FT) [4]). Thus, the classical result has 
the form [4–10]

�t2�ω2 ≥ 1

4
, (1)

where

�t2 =
+∞∫

−∞
|(t − t0) f (t)|2dt, (2)

�ω2 =
+∞∫

−∞
|(ω − ω0)F (ω)|2dω (3)
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stand for the spreads of the signal f (t) in the time domain and 
frequency domain, respectively, and where t0 and ω0 are defined 
in Section 3.1.1. The lower bound in the inequality (1) is not the 
tightest. Thanks to spreads in the time–frequency domain, there 
are some versions of uncertainty principle inequalities which are 
able to provide lower bounds tighter than that in the inequality 
(1). Specifically, reference [4] introduced a stronger result by con-
sidering a specific signal f (t) = | f (t)|e jϕ(t) ,

�t2�ω2 ≥ 1

4
+ Cov2

t,ω, (4)

where Covt,ω denotes the covariance of the signal f (t) =
| f (t)|e jϕ(t) ,

Covt,ω =
+∞∫

−∞
(t − t0)(ϕ

′(t) − ω0)| f (t)|2dt. (5)

Then, reference [10] proposed an uncertainty principle inequality

�t2�ω2 ≥ 1

4
+ COV2

t,ω, (6)

where the absolute covariance of the signal f (t) = | f (t)|e jϕ(t) has 
the form

COVt,ω =
+∞∫

−∞
|(t − t0)(ϕ

′(t) − ω0)|| f (t)|2dt. (7)
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Since the module of the integration of a signal is not exceeding the 
integration of the module of the signal [11], there holds a relation

COV2
t,ω ≥ Cov2

t,ω, (8)

so the inequality (6) exhibits a lower bound larger than that in the 
inequality (4).

The linear canonical transform (LCT) [12,13], a three free pa-
rameter class of linear integral transformation, includes as par-
ticular cases the FT, the fractional Fourier transform (FRFT) [5,6,
14–23], the Fresnel transform (FST) [24], the Lorentz transform 
(LT) [25], and the scaling and chirp multiplication operations [5–8]. 
The research on the theory and application of the LCT is attractive 
in community of signal processing due to the LCT’s effectiveness 
in non-stationary signal processing encountered in many realistic 
situations [26–30], such as the seism, the biomedicine, and the 
communications. Particularly, some essential theories of the LCT 
are currently derived [31–49], including its uncertainty principles 
[5,39–49]. These uncertainty principle inequalities are the gener-
alization of those in the FT domain [4,9,10] and FRFT domain [5,
20–23]. The theory of them has been widely applied to a number 
of application areas that relate to the spread in the LCT domain, 
for example the optical systems [44] (wave propagation through 
an aperture, free-space propagation, pulse propagation in optical 
fibers, etc.) and the affine modulation systems [8] (spectral analy-
sis in the time–frequency plane, etc.).

The uncertainty principle in the LCT domain was first discussed 
by reference [5], where a lower bound on the product of spreads 
of a signal energy in the time domain and LCT domain is b2

4 , i.e.,

�t2�u2
M ≥ b2

4
, (9)

where the spread of the signal f (t) in the LCT domain has the 
form

�u2
M =

+∞∫
−∞

|(u − uM0)F M(u)|2du, (10)

and where uM0 is defined in Section 3.1.1, and F M(u) denotes the 
LCT of the signal f (t) with the parameter matrix M = (a, b; c, d). 
More general, the LCT’s uncertainty principles focus mainly on 
lower bounds of uncertainty product of a signal in two LCT do-
mains. Based on the Parseval relation of the LCT [7,8], the Cauchy–
Schwartz inequality [11], and the inequality (1), reference [40] pro-
posed two kinds of lower bounds for real signals tighter than that 
in the inequality (9),

�u2
M1

�u2
M2

≥ 1

4
(a1b2 − a2b1)

2 +
[

a1a2�t2 + b1b2

4�t2

]2

, (11)

�u2
M1

�u2
M2

≥ 1

4
(a1b2 − a2b1)

2 +
[ a1a2

4�ω2
+ b1b2�ω2

]2
. (12)

From [40], the above two inequalities hold only on the condition 
that the LCT parameters have to satisfy a1

b1
�= a2

b2
. Thanks to rela-

tionships between moments in the LCT domain and those in time 
and frequency domains, reference [41] eliminated the restriction of 
a1
b1

�= a2
b2

, proving that inequalities (11) and (12) hold for arbitrary 
LCT parameters. According to the inequality (9) and the additivity 
and reversibility of the LCT [7,8], it also deduced a lower bound 
for complex signals,

�u2
M1

�u2
M2

≥ (a1b2 − a2b1)
2

4
. (13)

Then, due to the Parseval relation of the LCT, the Cauchy–Schwartz 
inequality, and the phase derivative of the deterministic complex 

signal f (t) = | f (t)|e jϕ(t) , reference [42] obtained a lower bound 
sharper than that in the above inequality,

�u2
M1

�u2
M2

≥ 1

4
(a1b2 − a2b1)

2

+
[
a1a2�t2 + b1b2�ω2 + (a1b2 + a2b1)Covt,ω

]2
.

(14)

Note that the inequality (14) can also be formulated by using the 
inequality (4) and a relationship between the spread in the LCT do-
main and spreads in time, frequency and time–frequency domains. 
Here, we give this relation below [43]

�u2
M = a2�t2 + 2abCovt,ω + b2�ω2. (15)

Based on inequalities (6), (8) and the above relation, the recent pa-
per [44] improves the result (14) through providing a larger lower 
bound,

�u2
M1

�u2
M2

≥
(

1

4
+ COV2

t,ω − Cov2
t,ω

)
(a1b2 − a2b1)

2

+
[
a1a2�t2 + b1b2�ω2 + (a1b2 + a2b1)Covt,ω

]2
.

(16)

In addition to uncertainty principle inequalities related to the 
product �u2

M1
�u2

M2
, there is an ample amount of literature de-

voting to studies on other versions of uncertainty principles associ-
ated with the LCT [45–49] and on uncertainty principles associated 
with the quaternionic linear canonical transform (QLCT) [50–53].

From the derivation of uncertainty principle inequalities given 
by (11), (12), (14) and (16), we conclude that the used tech-
niques are some common knowledge (Parseval relation of the LCT, 
Cauchy–Schwartz inequality, etc.) and a series of uncertainty prin-
ciples in the FT domain (inequalities (1), (4), (6), etc.). In this 
paper, we use the theory of matrix decomposition to deduce the 
lower bound of uncertainty product of the complex signal f (t) =
| f (t)|e jϕ(t) in two LCT domains. The main contribution is that we 
formulate two kinds of uncertainty principle inequalities, which 
provide two types of lower bounds tighter than those in inequal-
ities (14) and (16), respectively. To the best of our knowledge, 
inequalities (14) and (16) are current two of the best results in 
which the relation (15) plays an important role. Now we return 
our attention to this relation. Due to the inequality (4), the right-
hand-side of the relation (15) is a positive definite quadratic form 
[54], so �u2

M can be expressed as a form of matrices multiplication 
where the second-order symmetry matrix is positive definite. This 
matrix is known as the spread matrix whose four elements con-
sist of �t2 and �ω2, which locate at main-diagonal, and of Covt,ω

for the remaining two locations. Because of the matrix theory, 
the spread matrix can be converted to a positive definite diago-
nal matrix through the orthogonal transformation. Note that the 
spread matrix’s orthogonal decomposition holds for arbitrary sig-
nals as this matrix’s positive definite property is independent of 
signals. Then, the quadratic form is changed to a normal form as 
expressed by a linear combination of two perfect squares accompa-
nied by multiplicative coefficients that are two positive eigenvalues 
of the spread matrix. On the basis of the normal form of the re-
lation (15), we first propose an uncertainty principle inequality 
which improves the result (14) through providing a larger lower 
bound. We then obtain another version of uncertainty principle 
inequality which provides a lower bound tighter than that in the 
result (16). In the meantime, we discuss conditions that give rise 
to these stronger results truly, and the difference with the existing 
bounds. We also reduce the derived results to the time and LCT do-
mains and two FRFT domains. Furthermore, we present examples 
and simulations to validate the theoretical analyses, and finally we 
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