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Target detection in clutter is a fundamental problem in radar signal processing. When the received radar 
signal contains only few pulses, it is difficult to achieve a satisfactory performance using the traditional 
detection algorithm. In recent times, a generalized constant false alarm rate (CFAR) detector on the 
Riemannian manifold of Hermitian positive-definite (HPD) matrix was proposed. The employment of 
this detector, which compares the Riemannian distance between the covariance matrix of the cell under 
test (CUT) and an average matrix of reference cells with a given threshold, has significantly improved 
the detection performance. However, the application of this detector in real scenarios is still limited by 
two problems; it is computationally expensive and the detection performance is not very good since 
the Riemannian distance is utilized. In this paper, the symmetrized Kullback–Leibler (sKL) and the total 
Kullback–Leibler (tKL) divergences, instead of the Riemannian distance, are used as dissimilarity measures 
in the matrix CFAR detector. According to sKL and tKL divergences, three average matrices, the sKL 
mean, the sKL median, and the tKL t center, are derived. Furthermore, the relationship between the 
detection performance and the anisotropy of the distance measure used in the matrix CFAR detector is 
explored. Numerical experiments and real radar sea clutter data are given to confirm the superiority of 
the proposed algorithms in terms of the computational complexity and the detection performance.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Target detection in a clutter is of great importance in radar sig-
nal processing when only few pulses are available. However, the 
classical fast Fourier transform (FFT) based constant false alarm 
rate (CFAR) detection algorithms [1] cannot achieve satisfactory 
performance owing to the poor Doppler resolution as well as the 
energy spread of the Doppler filter banks. To circumvent these 
drawbacks, many strategies are conceived to cope with such sit-
uations. For instance, in [2–6], the authors exploit the priori infor-
mation about the surrounding environment to achieve significant 
performance improvements. Another example is provided in [7], 
wherein the Bayesian approach is employed to assume a suit-
able distribution about the unknown clutter covariance matrix, and 
similar methods are found in [8–10].

In recent times, a generalized CFAR technique on the Rieman-
nian manifold of the Hermitian positive-definite (HPD) matrix, 
referred to as the Riemannian distance-based matrix CFAR, was 
proposed by F. Barbaresco [11–13]. In this algorithm, the received 
radar complex signal z (z = {z0, z1, . . . , zn−1} represents the set of 
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n pulses) in each cell in one coherent processing interval (CPI) is 
modeled as a complex circular multivariate Gaussian distribution 
with zero mean, which can be represented by its covariance matrix 
R = E[zzH ]. The detection procedure of the Riemannian distance-
based matrix CFAR detector can be formulated as follows: For each 
cell under test (CUT), the Riemannian distance between the covari-
ance matrix of CUT and the Riemannian mean or median matrix 
of reference cells around the CUT is computed; if this distance 
is greater than a given threshold determined by the Monte Carlo 
method in order to maintain the false alarm constant, then one 
can conclude that there is a target at the location of the CUT. It has 
been proved that the Riemannian distance-based matrix CFAR de-
tector has better detection performance than the classical FFT-CFAR 
detection algorithm [12,13]. However, there are two shortcomings 
in the Riemannian distance-based matrix CFAR detector: the com-
putational cost is very high; the detection performance is not very 
good.

To meliorate the above deficiencies, a straight conception is 
to explore some alternative distance measures on the Riemannian 
manifold instead of the Riemannian distance. Simultaneously, these 
distance measures have lower computational complexity and bet-
ter detection performance than the Riemannian distance used in 
the matrix CFAR detector. In addition to the Riemannian distance, 
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many of the measure structures can be given on the Riemannian 
manifold of HPD matrices. For instance, the square loss function 
has been applied to regression analysis; the Bhattacharyya diver-
gence is exploited for diffusion tensor magnetic resonance image 
(DT-MRI) segmentation [14,15]; and the Kullback–Leibler (KL) di-
vergence [16] has been used for measuring the dissimilarity be-
tween two probability density functions. The KL divergence is an 
information measure already widely used in many detection prob-
lems, even involving radar signals. In the multi-target recognition 
application, the mutual information and the KL divergence are 
used for the multiple-input multiple-output (MIMO) radar optimal 
waveform design [17]. In [18], the authors employ the KL diver-
gence to measure the difference between the probability densities 
of the observations under two alternative hypotheses. Moreover, 
the difference is applied to address the problem of space–time 
code design for a MIMO radar detection system. In the synthetic 
aperture radar (SAR) image change detection application, the prob-
lem of change detection on SAR images acquired at different dates, 
is addressed via the non-parametric estimation [19] and the para-
metric estimation [20,21] of the KL divergence is used as a distance 
between statistical distributions of local features. Moreover, the KL 
divergence has been applied to anomaly detection with the wall 
human detection [22] and the monitoring of large-scale technical 
systems [23], Stereo matching [24], incipient fault detection [25], 
and the optimal distribution approximation [26]. In radar target 
detection applications, our previous work [27] and Zhao [28] have 
explored the matrix CFAR detection method based on the KL di-
vergence. Numerical experiments [27,28] and X-band radar clutter 
[12] are given to confirm that the detection performance of KL 
divergence-based matrix CFAR detector outperforms the Rieman-
nian distance-based matrix CFAR detector, and both these two ma-
trix CFAR detection algorithms have better detection performance 
than the classical FFF-CFAR.

Among many modern radar applications, a class of detector 
is based on the Cell-Averaging (CA) CFAR technique. The cell-
averaging process is an example of what is known as a sliding 
window detector. It is based upon the properties of the Gaussian 
processes instead of the Neyman–Pearson Lemma. The matrix CFAR 
detector [12,27] and the classical CA-CFAR detector [1] are of sim-
ilar schemes under the constant false alarm rate formulation. The 
slow-time dimension of the received clutter data in each cell is 
modeled and represented as a HPD matrix. This HPD matrix de-
notes the correlation or power level between multiple pulses, and 
is estimated by the pulses data according to its correlation coeffi-
cient. The matrix CFAR detector differs from the CA-CFAR detector 
in three ways: (1) the observation data in each cell is a HPD ma-
trix, and not the original pulse data; (2) the distance measures 
used in matrix CFAR detector is Riemannian distance or divergence 
measure, and not the Euclidean distance; and (3) the averaging 
process in matrix CFAR detector is geometric mean of a set of HPD 
matrices, not the arithmetic mean of scalar number. These differ-
ences imply that the matrix CFAR detector performs on the HPD 
matrix space, in other words, the different geometry considered in 
detection.

In this paper, we develop the detection algorithms in the frame-
work of the matrix CFAR detector based on the symmetrized 
Kullback–Leibler (sKL) divergence [29] and the total Kullback–
Leibler (tKL) divergence [30]. According to sKL and tKL divergences, 
three average matrices, the sKL mean [31], median, and the tKL 
t center [30], are derived and explored to replace the Rieman-
nian mean and median. Furthermore, we explore the relationship 
between the detection performance of the matrix CFAR detectors 
based on different distance measures and the anisotropy of the 
distance measure. We show that different distance measures have 
different anisotropy, and the distance measure, which has a bet-
ter anisotropy, has a better detection performance. These results 

would have been proven by numerical experiments and real sea 
clutter data.

The rest of this paper is organized as follows: Section 2 gives 
a brief description of the Riemannian distance-based matrix CFAR 
detector; the detector proposed in this paper is detailed in Sec-
tion 3; results obtained from simulated data are presented in Sec-
tion 4; and Section 5 concludes our work.

1.1. Notation

A lot of notations are adopted as follows. We use math italic 
for scalars x, uppercase bold for matrices A, and lowercase bold 
for vectors x. The conjugate transpose operator is denoted by the 
symbol (·)H . tr(·) and det(·) are the trace and the determinant 
of the square matrix argument, respectively. I denotes the iden-
tity matrix, and Cn , H(n) are the sets of n-dimensional vectors of 
complex numbers and of n × n Hermitian matrices, respectively. 
The Frobenius norm of the matrix A is denoted by ‖A‖F . For any 
A ∈ H(n), A > 0 means that A is a HPD matrix, and denoted by 
P(n). Finally, E(·) denotes statistical expectation.

2. Riemannian distance-based matrix CFAR detector

2.1. Signal model and signal manifold

For the radar received complex clutter data z = {z0, z1, . . . ,
zn−1} in each cell in one CPI, where n is the length of pulses, as-
suming z is a complex circular multivariate Gaussian distribution, 
z ∼ C N(0, R), with zero mean and covariance matrix R ,

p(z|R) = 1

πn det(R)
exp

{−zH R−1z
}

(1)

with the covariance matrix R given by

R = E
[
zzH] =

⎡
⎢⎢⎢⎣

r0 r̄1 · · · r̄n−1
r1 r0 · · · r̄n−2
...

. . .
. . .

...

rn−1 · · · r1 r0

⎤
⎥⎥⎥⎦ ,

rk = E[zi z̄i+k], 0 ≤ k ≤ n − 1,0 ≤ i ≤ n − 1 (2)

where rk = E[zn z̄n+k] is called the correlation coefficient and z̄ de-
notes the complex conjugate of z. R is a Toeplitz HPD matrix with 
R H = R . The estimation of covariance matrix R is called the direct 
data domain method, which has been used in array signal pro-
cessing [32] and space time adaptive processing [33]. It is well 
known that the stationary Gaussian processes have both ergocity 
and strict stationarity. According to the ergodicity, the correlation 
coefficient rk of data z can be calculated by averaging it over time 
instead of its statistical expectation E[zn z̄n+k], as

r̂k = 1

n − k

n−1−k∑
j=0

z j z̄ j+k, 0 ≤ k ≤ n − 1 (3)

The pulse data in each cell in one CPI is modeled by Eqs. (1)
and (2), and are represented by an HPD matrix. This matrix 
stands for the correlation or power level between multiple pulses. 
Through parameterization by the HPD matrix, the received clutter 
data in each cell in one CPI z = {z1, z2, . . . , zn} can be mapped into 
an n dimensional parameter space,

ψ :Cn → P(n), z → A ∈ P(n) (4)

Here, P(n) forms a differentiable Riemannian manifold [34]. In 
the following, we present the distance measure and its mean and, 
median on manifold.
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