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Mutual coupling (MC) is one of the major error sources in array signal processing. The previous methods 
mostly assume that the MC is direction-independent and it is modeled by a single MC matrix. However, 
this is not valid in a practical scenario where the effect of MC differs for the source signals incoming from 
different directions. In this paper, calibration of directional MC is considered for direction-of-arrival (DOA) 
estimation problem. An alternating and sectorized parameter estimation (ASPE) algorithm is proposed 
where the estimates of the source DOA angles and the MC coefficients corresponding to each source 
direction are found iteratively. A unified approach is introduced so that the proposed algorithm can 
effectively work for different array geometries regardless of the array geometry and the corresponding 
MC matrix model. The performance of the proposed method is evaluated by several experiments and 
it is compared with the conventional calibration techniques as well as the Cramer–Rao lower Bound 
which is derived for the considered problem. It is shown that the proposed method effectively finds 
the unknown source and coupling parameters and it has superior performance as compared to the 
conventional calibration techniques.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Direction-of-arrival (DOA) estimation of unknown source loca-
tions is an important topic in array signal processing as well as 
in radar, sonar and communications [1]. While there are several 
methods proposed for this purpose such as the MUSIC (MUltiple 
SIgnal Classification) algorithm [2], most of them require the exact 
knowledge of the array manifold. In a practical scenario, the an-
tennas in the array have mutual coupling (MC) which corrupts the 
array data and degrades the DOA estimation performance signifi-
cantly [3].

Several methods are proposed for the estimation of source DOA 
angles in the presence of MC [4–19]. In [4–7], joint DOA angle and 
MC coefficient estimation problem is considered for uniform linear 
arrays (ULA). In [8,9] and [10], recursive rank reduction methods 
are used for MC calibration for ULA and uniform circular array 
(UCA). In [11], an alternating minimization algorithm is proposed 
for the compensation of MC for ULA. Higher order statistics are 
used in [12] and [13] for DOA estimation problem in the presence 
of MC. In [13–15], random array structures are considered for the 
same problem. [16] studies the problem of single snapshot DOA 
estimation in the presence of MC for a UCA. In [17] and [18], DOA 
estimation problem is considered in the presence of MC and mul-
tipath. An alternating direction based method is proposed in [19]
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using the sparsity of the source DOA angles in the spatial domain. 
Notice that, the above methods are based on the assumption that 
the MC among the antennas is direction-independent. In this case, 
MC is modeled by a single MC matrix in the array model [20]
and it is the same for all source directions. However in practice, 
antennas have non-omnidirectional beampattern so that the array 
response differs both in gain and phase for each source direction 
[21] and MC becomes direction-dependent. Therefore, directional-
dependency of MC should be taken into account for a realistic 
scenario and accurate estimation performance.

There are limited number of works which consider the effect 
of direction-dependent MC on DOA estimation problem [22–24]. In 
[22], a sectorized approach is proposed for the estimation of source 
DOA angles using patch antennas which have non-omnidirectional 
beampattern. [22] uses the assumption that the effect of MC does 
not change in certain angular sectors. [23] uses a similar approach 
by employing multiple known calibration matrices for MC. In [24], 
a rank reduction based method is proposed for a UCA in the pres-
ence of elevation-dependent MC where the MC matrix is estimated 
by the receiving-mutual-impedance method proposed in [25,26]. 
While these methods provide sufficient direction finding (DF) ac-
curacy, they require the knowledge of the MC matrix to be known 
or estimated by an offline technique before the DF operation. This 
issue poses an accuracy problem since the estimated parameters 
of an offline calibration technique cannot accurately represent the 
system dynamics for a long period of time [27]. This is an im-

http://dx.doi.org/10.1016/j.dsp.2017.06.021
1051-2004/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.dsp.2017.06.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:ahmetmelbir@gmail.com
mailto:ahmetelbir@duzce.edu.tr
http://dx.doi.org/10.1016/j.dsp.2017.06.021


JID:YDSPR AID:2145 /FLA [m5G; v1.218; Prn:30/06/2017; 13:08] P.2 (1-10)

2 A.M. Elbir / Digital Signal Processing ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

portant problem especially when the system parameters change in 
time [3].

In the context of DOA estimation under unknown MC, most of 
the methods are proposed for certain array structures [4–9,11,12,
17–19]. These methods are based on the special structure of the 
MC matrix such as Toeplitz, circulant and block-Toeplitz. Therefore, 
the construction of the MC matrix differs for different array ge-
ometries such as for ULA, UCA [3, See Lemma 2 and 3] and URA 
[28]. This paper addresses this problem and proposes a novel ap-
proach so that the construction of the MC matrix does not depend 
on the array geometry.

In order to mitigate the effect of MC, an “array shrinkage” 
approach is used in [4] and [29–31]. While this approach pro-
vides a non-iterative solution for parameter estimation, it causes 
an aperture loss in the array so that the DF accuracy is signifi-
cantly reduced. In order to eliminate this loss, a transformation-
based approach is proposed in [28] in the presence of direction-
independent MC. This method also fails in case of directional MC.

In this paper, calibration of the antenna arrays for DOA estima-
tion in the presence of directional MC is considered. An alternating 
and sectorized parameter estimation (ASPE) algorithm is proposed 
for the joint estimation of DOA angles of the unknown source lo-
cations and MC coefficients. The proposed method finds the DOA 
angle of the sources by using the MUSIC algorithm [2]. The esti-
mation of the MC coefficients is done in an optimum manner by 
solving a linearly constrained quadratic minimization problem. The 
angular space is divided into small sectors where the effect of MC 
is assumed to be the same. Then the MUSIC spectrum is obtained 
for each angular sector for the DOA estimation. The performance 
of the proposed calibration technique is compared with both con-
ventional methods and the Cramer–Rao lower bound (CRB) which 
is derived at the end of the paper for the considered problem.

2. Array model and problem formulation

In this paper, estimation of DOA angles of K narrowband source 
signals impinging on an M-element antenna array is considered. 
In traditional works [4–9,11–19] where the direction-independent 
MC is assumed, the array output is given as follows

y(ti) = CAs(ti) + w(ti), i = 1, . . . , T (1)

where T is the number of snapshots, w(ti) is spatially and tem-
porarily white Gaussian noise vector and s(ti) = [s1(ti), s2(ti), . . . ,
sK (ti)]T is a K × 1 vector composed of the source signals. A =
[a1, a2, . . . , aK ] is the M × K array steering matrix and the mth 
element of ak is given as

amk = exp{ j
2πpT

mrk

λ
} (2)

where λ is the wavelength and pm = [xm, ym, zm]T is the po-
sition of the mth antenna in Cartesian coordinate system and 
rk = [cos(φk) sin(ϕk), sin(φk) sin(ϕk), cos(ϕk)]T . φk and ϕk denote 
the azimuth and the elevation angle of the kth source direction 
respectively.

In case of directional MC, the array output can be modeled as

y(ti) =
K∑

k=1

Ckaksk(ti) + w(ti), i = 1, . . . , T (3)

which can be written in a compact form as

y(ti) = Ãs(ti) + w(ti), i = 1, . . . , T (4)

where

Ã = [C1a1,C2a2, . . . ,CK aK ]. (5)

Ck denotes the MC matrix corresponding to the kth source direc-
tion (φk, ϕk). In other words, the coupling contribution of each 
source signal to is different for k = 1, . . . , K .

The aim of this work is to estimate the unknown source DOA 
angles and the MC matrices {φk, ϕk, Ck}K

k=1 given the array output 
{y(ti)}T

i=1 and antenna positions {pm}M
m=1.

3. The structure of the MC matrix

The structure of the MC matrix differs for different array ge-
ometries. In this section, the MC structures of commonly used 
antenna arrays such as ULA, UCA and URA are given. The struc-
tures of the MC matrix of a ULA and UCA are given as [3]

CULA = Toeplitz{[c1, c2, . . . , cM ]}. (6)

CUCA =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M is even,

Toeplitz{[c1, c2, . . . , cL, cL−1, . . . , c2]}.
M is odd,

Toeplitz{[c1, c2, . . . , cL, cL, cL−1, . . . , c2]}
(7)

where {cl}L
l=1 are the distinct MC coefficients. The structure of the 

MC matrix for an M × M̄ URA can be given as follows [30]

CURA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C̃1 C̃2 . . . C̃M−1 C̃M

C̃2 C̃1 C̃2 . . . C̃M−1
... C̃2

. . .
. . .

...

C̃M−1
. . .

. . . C̃1 C̃2

C̃M C̃M−1 . . . C̃2 C̃1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

C̃m is an M̄ × M̄ MC matrix corresponding to the mth subarray and

C̃m = Toeplitz{[c(m)
1 , c(m)

2 , . . . , c(m)

M̄
]} (9)

where c(m)

m̄ is the coupling coefficient in the mth subarray.
Hence the number of distinct MC coefficients for the above ar-

rays can be given as

L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M, ULA
M
2 + 1, UCA with M is even
M+1

2 , UCA with M is odd

MM̄, URA

. (10)

4. Estimation of DOA angles

In this section, the estimation of the unknown source DOA an-
gles is investigated. First, we define the array covariance matrix as

R̂y = 1

T

T∑
i=1

y(ti)yH (ti) = ÃR̂sÃH + R̂w (11)

where R̂s and R̂w are signal and noise sample covariance matrices 
respectively. Using eigendecomposition, R̃y can be written as

R̂y = U�UH (12)

where � = diag(σ1, σ2, . . . , σM) is a diagonal matrix composed of 
the eigenvalues of R̂y in a descending order. U = [Us Un] repre-
sents the signal and noise subspace eigenvector matrices respec-
tively (Us ∈ C

M×K and Un ∈ C
M×M−K ). Due to the orthogonality 

of signal and noise subspaces, Us⊥Un holds [2]. Furthermore, the 
columns of Us and Ã span the same space. Then we can write the 
following property, i.e.

||UH
n Ã||2F = 0. (13)
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