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This article proposes a state observer to find a model for a given signal, i.e. to approximate a treated 
signal. The design of the state observer is based on a dynamical system of equations which is generated 
from the increasing-order differentiation of a n-th order Fourier series. This dynamical system is set in 
state space representation by considering that the Fourier series is the first state and the rest of the states 
are the successive derivatives of the series. The purpose of the state observer is the recursive estimation 
of the states in order to recover the coefficients from them. This set of coefficients produces the best fit 
between the dynamical system and the signal. The dynamical system used for the observer conception 
shall be, together with the estimated coefficients, the model that will describe the signal behavior. 
The special feature of the proposed observer is the order of the differential equations of the model 
on which it is based, dα(t)ν(t)/dtα(t) , which can take integer and non-integer values, i.e. α(t) ∈ (0, 1]. 
Even more important, α(t) can be a smooth function such that α(t) ∈ (0,1] in the interval t ∈ [0, T ]. 
The procedure to design the state observer of variable-order as well as some examples of its use in 
engineering applications are presented.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Fractional Calculus (FC) is as old as the classic calculus, how-
ever, it is not as well known in the scientific community or in 
the applied sciences. The beauty of this area is that derivatives 
and integrals of fractional order have nonlocal properties, so it 
considers the past and distributed effects in any physical system. 
Another peculiarity of FC is the inclusion of new degrees of free-
dom to the system by increasing the information that can be ob-
tained from the nature of the phenomenon in question [1–3]. The 
Riemann–Liouville definition entails physically unacceptable ini-
tial conditions (fractional order initial conditions); conversely for 
the Liouville–Caputo representation, the initial conditions are ex-
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pressed in terms of integer-order derivatives having direct physical 
significance. Several studies [4–7] have shown that, many complex 
physical problems can be described with great success via variable-
order (VO) derivatives. A novel study underlining the advantages 
of using these derivatives rather than constant order fractional 
derivative was presented in [8]. Some applications include pro-
cessing of geographical data in [9], diffusion processes in [10,11]
and groundwater flow equation [12]. Since the equations described 
by the VO derivatives are highly complex, difficult to handle an-
alytically, it is therefore advisable to investigate their solutions 
numerically. Possible numerical implementations of VO fractional 
derivatives are given in [13–20].

One of the potential uses of VO derivatives is the processing of 
signals. This was demonstrated in [9] and [21], where filters were 
designed by using VO derivatives. The motivation of this work goes 
in a similar sense: the use of VO derivatives for an elemental task 
of signal processing. Such a task is the identification of a model, 
able to reproduce the signal in other tasks such as filtering or noise 
reduction. More precisely, identification is to find the parameters 
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of a mathematical model that describes a set of data in a way that 
minimizes the difference between the model and the data. In other 
words, identification is to find a model that approximates a treated 
signal. A tool very used for the identification of models is the state 
observer.

In 1980 Gene H. Hostetter proposed a class of state observer 
[22] that permits the best fit between a dynamical system and 
a data signal, as well as the transformation of such a signal to 
the frequency domain by means of the recursive identification of 
Fourier coefficients [23]. Since the presentation of this work, simi-
lar observers with improved features have been proposed either to 
deal with noise [24], disturbances, lack of data [25] or to estimate 
other parameters such as frequency [26]. In this work, the inter-
est is not in finding the spectral response of a signal but in finding 
a dynamic model that reconstructs such a signal. The reconstruc-
tion of a signal in the context of this work means to find the 
coefficients of a linear combination of functions, sines and cosines 
functions in our case, which approximates the signal such that it 
can be reconstructed.

The design of the state observer that we propose is based on 
a dynamical system which is generated from the increasing-order 
differentiation of a n-th order Fourier series. This dynamical sys-
tem is set in state space representation by considering that the 
Fourier series is the first state and the rest of the states are the 
successive derivatives of the series. The purpose of the state ob-
server is the recursive estimation of the states in order to recover 
the Fourier coefficients from them. The result of the estimation is 
a set of coefficients that produce the best fit between the dynam-
ical system and the signal. In other words, we obtain a dynamical 
system, with estimated coefficients, that represents the unknown 
dynamics of a data signal. The special feature of the proposed ob-
server is the order of the differential equations of the model on 
which it is based, dα(t)ν(t)/dtα(t) , which can take integer and non-
integer values, i.e. α(t) ∈ (0, 1]. Even more, α(t) can be a smooth 
function such that α(t) ∈ (0, 1] in the interval t ∈ [0, T ].

The main goal of this paper is to study the proposed observer 
in different applications that require a dynamical system that rep-
resents the unknown mathematical description of a data signal. 
The first example is didactic: the approximation of both a square 
signal and a sawtooth signal. In the second example, three ob-
servers were employed to approximate the chaotic behavior of 
the three states of the Chua’s circuit. In the third example, the 
observer was used to approximate experimental data of a wave 
in the Caribbean sea in Puerto Morelos, Q.R., México. Finally, the 
last example presents the reconstruction of the acceleration mea-
surement of the North–South component of the “1940 El Centro” 
earthquake.

This paper is organized as follows. Section 2 provides some im-
portant definitions commonly used in fractional calculus. Section 3
presents the design of a classical spectral observer, i.e. a state ob-
server composed of integer order derivatives. From the classical 
observer, in Section 4, a generalization of such an observer is pro-
vided; such a generalization is the fractionalization of the deriva-
tives of the classical observer by using the Riemann–Liouville and 
the Grünwald–Letnnikov derivatives. Section 5 presents some re-
sults of the application of the proposed observer in engineering 
applications. Finally, Section 6 ends this paper with some conclu-
sions and perspectives.

2. Variational order differential operator

To well situate readers that are not acquainted with the no-
tion of fractional differentiation, we show in this section the 
Riemann–Liouville and Grünwald–Letnnikov fractional derivatives 
with variable-order [27].

The left and right Riemann–Liouville (RL) fractional derivative 
of variable-order 0 < α(t) < 1 for all t ∈ [a, b] are defined by

RL
a Dα(t)

t f (t) = 1

�(m − α(t))

dm

dtm

t∫
a

f (η)

(t − η)α(t)−m+1
dη,

m − 1 < α(t) < m, (1)

where, �(·) denotes the Gamma function, Eq. (1) is the RL defini-
tion of the left fractional derivative of variable-order for (α(t) > 0).

RL
t Dα(t)

b f (t) = 1

�(m − α(t))
(− dm

dtm
)

b∫

t

f (η)

(η − t)α(t)−m+1
dη,

m − 1 < α(t) < m, (2)

where, Eq. (2) is the RL definition of the right fractional derivative 
of variable-order for (α(t) > 0).

For equations (1) and (2), α(t) is the order of the derivative and 
is not equal to zero, in the case when α(t) ∈ Z

+ , these derivatives 
are defined in the classical case.

The Grünwald–Letnnikov (GL) approximation is commonly used 
to numerical simulations (some works are given in [28,29]) and is 
defined as follows 

GL
a Dα(t)

t f (t) = lim
h→0

1

hα(t)

t−a
h∑

j=0

(−1) j
(

α(t)
j

)
f (t − jh), (3)

where, j is the time increment and α(t) ∈ R. Eq. (3) is the GL 
fractional derivative of variable-order for (α(t) > 0).

It is important to note here that the fractional derivative of 
constant-order can be seen as a special case of the fractional 
derivative of variable-order.

3. State observer design

To construct the proposed observer, we formulate a differential 
equations’ system in state space representation with N states by 
considering that Fourier series is the first state of the system and 
the rest of the states are successive derivatives of the Fourier series 
expressed by Eq. (4) with n as the series order. 

y(t) = a0

2
+

n∑
k=1

[ak cos (kωt) + bk sin (kωt)] , k ∈ Z, (4)

where, y(t) is the signal to be approximated, ak and bk are the 
Fourier coefficients. ω = 2π� f , where � f is the frequency reso-
lution. � f = 1

T = 1
N�t where T is the sample interval, �t is the 

sampling time and N is the total number of samples.
Before formulating the dynamical system, we remove the term 

a0 since the offset can be estimated through the coefficients 
a1, b1, ..., an, bn as a constant component of them. Thereby, the se-
ries for approximating the time function can be expressed as 

y(t) =
n∑

k=1

[ak cos (kωt) + bk sin (kωt)] . (5)

If the order of the Fourier series is n = 1, we need to formulate 
a dynamical system with N = 2 states, each one to recover each 
coefficient (a1 and b1). Thereby, the two first states are the Fourier 
series and its first derivative.

y(t) = a1 cosωt + b1 sinωt, (6)

ẏ(t) = −ωa1 sinωt + ωb1 cosωt.
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