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Detecting the sparsity pattern or support set of a sparse vector from a small number of noisy linear 
measurements is a challenging problem in compressed sensing. This paper considers the problem of 
support recovery when statistical side information is available. From the standard linear and noisy 
measurement model with arbitrary sensing matrix and Gaussian additive noise and by exploiting the 
side information, a new linear model is derived which benefits from a larger sample size. The common 
potential benefits of the increase in the number of samples are revealed. The stability guarantees are 
then analyzed based on the new model. Two decoding schemes are taken for the support recovery 
task from the new framework, namely, Maximum Likelihood (ML) and Joint-Typicality (JT) decoding. 
Performance bounds of the support recovery from the new framework are developed and upper bounds 
are derived on the error probability of these decoders when they are fed with the prior knowledge 
which is the statistical properties of the new measurement noise. Finally, an extension is provided for 
when the noise is non-Gaussian. The results show that with the aid of the prior knowledge and using 
the new framework one can push the performance limits of the sparsity pattern recovery significantly. 
The approach is supported by extensive simulations including extension of LASSO to the new framework.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Compressed sensing, one of the emerging research field in the 
last decade, has established that a small set of observations ac-
quired via linear projections is adequate for estimation and recov-
ery of signal, when the signal of interest has specific characteris-
tics, i.e. is sparse in a certain basis. More concretely, it seeks an 
estimate of w ∈ R

N via solving an underdetermined linear system 
of equations:

m = S w + e (1)

where S ∈ R
n×N is a fat sensing or measurement matrix with 

n � N , m ∈ R
n is the output noisy measurement of the k-sparse 

vector w , i.e. it has k < n � N nonzero entries, and e is the ad-
ditive noise vector. Efforts to solve this problem have resulted in 
several breakthrough algorithms with affordable complexity, such 
as message passing [1], LASSO [2], Orthogonal Matching Pursuit 
(OMP) and variants thereof [3–6]. Concurrently, a great deal of re-
searches derived performance and stability guarantees for these 
algorithms [7–10]. The most challenging aspect of sparse signal re-
covery is estimating its true support set or positions of its nonzero 
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entries. Upon decoding the support set, the signal can be esti-
mated simply by solving a least squares problem. Besides, there 
are many applications where finding the correct support set is 
more important than completely recovering the signal. Magne-
toencephalography (MEG), electroencephalography (EEG), cognitive 
radio, subset selection in regression, and multi-user communica-
tion systems are examples of such applications [11–14]. In this 
paper, we are concerned with fundamental limits of the support 
recovery problem. Fundamental limits of any recovery problem can 
be achieved by analyzing the performance of an optimal decoder. 
These limits are highly valuable, since they reveal the gap between 
the performance of any tractable recovery algorithm and the ul-
timate performance limits. In recent years in several works, the 
authors studied information-theoretic limits of any estimator for 
exact and approximate support recovery and for single and mul-
tiple measurement vector models [15–38]. In this paper, we are 
interested in deriving the performance limits of sparsity pattern 
recovery when the decoder has some types of prior information. 
A new statistical model with a different measurement matrix and 
a different measurement noise vector is presented which is a re-
formulated version of the standard model (1). For the mentioned 
model, upper bounds of the probability of error events pertaining 
to the support recovery problem are derived for ML and JT de-
coders when the decoders have prior knowledge (for instance first 
and second moments of the new measurement noise vector). The 
results are further extended to the models with non-Gaussian ad-
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ditive noise. Moreover, testing the new framework on the LASSO 
and getting considerable improvements proves the validity of the 
results numerically.

The rest of the paper is organized as follows. In section 2.1 the 
problem formulation and our contributions are stated and in sec-
tion 2.2 relation to past works is discussed. The new framework is 
introduced and the stability guarantees are derived in section 3. 
Using the proposed model, performance bounds of the sparsity 
pattern recovery in terms of probability of error for the ML and 
the JT decoders and extension of the results to the non-Gaussian 
noise are provided in section 4. Simulations are presented and dis-
cussed in section 5. Conclusions are drawn in section 6. Finally, 
appendices are provided in section 7.

Notation

Bold letters are used for vectors and matrices and regular let-
ters for scalar variables. I stands for the identity matrix and 0
denotes zero vector both with appropriate dimensions. Given Ma-
trix S and vector w , si j and wi denote i j-th element of S and i-th 
element of w , respectively. Given set I, wI is a vector that con-
sists of elements of w indexed by set I, and SI is a sub-matrix 
of S containing only columns associated with the index set I. 
TSI

= SI(S t
I SI)−1 S t

I is the orthogonal projection matrix onto the 
subspace spanned by the columns of S I and the orthogonal pro-
jection matrix onto the orthogonal complement of this subspace is 
denoted using T⊥

SI
= I − TSI

. Let A and B be two matrices with 
identical number of columns. The Khatri–Rao product of A and B
which is the column-wise Kronecker product of them is denoted 
by A � B. |I| denotes cardinality of the set I. Finally, Pr (.) refers 
to the probability measure.

2. Background

In the following subsections we first present the problem state-
ment and outline of our contributions and then review the relevant 
works and their relation to our proposed approach.

2.1. Problem statement and contributions

Consider the measurement model (1) where w is k-sparse and 
k is known. In Theorems 4.1 and 4.2 we assume that the noise vec-
tor e has i.i.d. N

(
0, σ 2

)
components. In Theorems 4.3 and 4.4 we 

assume that e is an arbitrary random vector. The majority of previ-
ous works have assumed that the measurement matrix has Gaus-
sian i.i.d. entries. In contrast we take an arbitrary measurement 
matrix, i.e. it can have non-i.i.d. elements with any distribution (in 
its general domain). The unknown k-sparse vector w is assumed 
deterministic and its support set is denoted as itrue which is a 
k-element subset of the index set {1,2, ..., N}. We assume sym-
metry with respect to itrue, i.e. it is uniformly distributed over all (N

k

)
possible subsets of size k. Taking into account that we are only 

interested in the support set recovery, a strategy for this recovery 
has to be exploited. This is achieved by using a decoder which is 
a mapping from the given knowledge, namely m, S , and statisti-
cal characteristics of the additive noise, to an estimated support 
set with cardinality k. ̂ iD stands for such estimate with subscript 
indicating the type of decoder. The performance of the decoder is 
evaluated using exact and partial support recovery metrics and is 
derived in terms of the probability of error. Given the true support 
set itrue , the probability of sparsity pattern recovery error for the 
zero-one error metric or for the perfect recovery can be expressed 
as:

Pe =
∑
itrue

Pr(̂iD �= itrue | itrue)Pr(itrue) (2)

where the probability is taken over all measurement vectors. We 
also investigate approximate recovery considering the following 
less stringent form of the error probability:

Pe,a =
∑
itrue

Pr

(
|̂iD ∩ itrue|

|itrue| < θ |itrue

)
Pr (itrue) (3)

in which θ ∈ (0,1). Pe,a considers recovery of most of the sub-
space information of the unknown vector w [21]. We desire to 
obtain tight upper bounds on the error probabilities of ML and JT 
estimators.

Maximum Likelihood decoder

We investigate performance of the ML decoder for support re-
covery which is optimal when there is no prior knowledge about 
w other than it being k-sparse. As was stated previously the true 
support set is denoted by itrue and the estimated support set is 
denoted as ̂ iML . The decoder searches exhaustively over all pos-
sible subsets îML ⊂ {1,2, ..., N} of size k and chooses the one 
which minimizes the quadratic norm ‖m − Ŝ iML

ŵ îML
‖2

2, where 

ŵ îML
=

(
S T

îML
Ŝ iML

)−1
S T

îML
m is the least square estimator of w îML

. 
The ML decoder makes an error if:

‖m − Ŝ iML
ŵ îML

‖2
2 < ‖m − S itrue ŵ itrue‖2

2.

It is easy to see that:

‖m − Ŝ iML
ŵ îML

‖2
2 = ‖

(
I − T Ŝ iML

)
m‖2

2 = ‖T⊥
Ŝ iML

m‖2
2,

and:

‖m − S itrue ŵ itrue‖2
2 = ‖

(
I − TS itrue

)
m‖2

2 = ‖T⊥
S itrue

m‖2
2.

By assuming that rank(S itrue ) = k and for every ̂iML , rank( Ŝ iML
) = k, 

the error event associated with the ML decoder can be considered 
as [15]:

ξML =
{
‖T⊥

Ŝ iML
m‖2 − ‖T⊥

S itrue
m‖2 < 0

}
. (4)

The ML decoder declares an error when at least one ̂iML �= itrue

is preferred to itrue . The overall error probability is then:

Pe = Pr

⎛⎜⎜⎜⎝ ⋃
îML �=itrue,

|̂iML |=k

ξML

⎞⎟⎟⎟⎠ . (5)

Joint Typicality decoder

We also investigate the performance of a JT decoder. JT decoder 
is known to be asymptotically optimal. It characterizes the events 
based on their typicality. Thus, error events are expressed based 
on atypicality. Here, the following definition of the joint typicality 
property is exploited [21,39].

Joint Typicality property: The measurement vector m of the mea-
surement model (1) and a set of indices I ⊂ {1, 2, ..., N} with car-
dinality k are υ-jointly typical, if rank(SI) = k, and for any υ > 0
the following event occurs:

ξI
J T =

{∣∣∣∣1

n
‖T⊥

SI
m‖2 − 1

n
E

{
‖T⊥

SI
e‖2

}∣∣∣∣ < υ

}
. (6)

The JT decoder outputs an estimate of the support set denoted by 
î J T which is a k-element subset of {1, 2, ..., N}. An error is declared 
when ̂i J T :
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