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Design of time–frequency localized filters and functions is a classical subject in the field of signal 
processing. Gabors’ uncertainty principle states that a function cannot be localized in time and frequency 
domain simultaneously and there exists a nonzero lower bound of 0.25 on the product of its time 
variance and frequency variance called time–frequency product (TFP). Using arithmetic mean (AM)– 
geometric mean (GM) inequality, product of variances and sum of variances can be related and it can be 
shown that sum of variances has lower bound of one. In this paper, we compute the frequency variance of 
the filter from its discrete Fourier transform (DFT) and propose an equivalent summation based discrete-
time uncertainty principle which has the lower bound of one. We evaluate the performance of the 
proposed discrete-time time–frequency uncertainty measure in multiresolution setting and show that the 
proposed DFT based concentration measure generate sequences which are even more localized in time 
and frequency domain than that obtained from the Slepian, Ishii and Furukawa’s concentration measures. 
The proposed design approach provides the flexibility in which the TFP can be made arbitrarily close 
to the lowest possible lower bound of 0.25 by increasing the length of the filter. In the other proposed 
approach, the sum of the time variance and frequency variance is used to formulate a positive definite 
matrix to measure the time–frequency joint localization of a bandlimited function from its samples. We 
design the time–frequency localized bandlimited low pass scaling and band pass wavelet functions using 
the eigenvectors of the formulated positive definite matrix. The samples of the time–frequency localized 
bandlimited function is obtained from the eigenvector of the positive definite matrix corresponding to 
its minimum eigenvalue. The TFP of the designed bandlimited scaling and wavelet functions are close 
to the lowest possible lower bound of 0.25 and 2.25 respectively. We propose a design method for 
time–frequency localized three-band biorthogonal linear phase (BOLP) wavelet perfect reconstruction 
filter bank (PRFB) wherein the free parameters can be optimized for time–frequency localization of 
the synthesis basis functions for the specified frequency variance of the analysis scaling function. The 
performance of the designed filter bank is evaluated in classification of seizure and seizure-free EEG 
signals. It is found that the proposed filter bank outperforms other existing methods for the classification 
of seizure and seizure-free EEG signals.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In the last two decades, wavelet filter banks have played a key 
role in describing nonstationary signals such as speech, seismic, 
radar, electroencephalogram (EEG), electrocardiogram (ECG) [1–3]. 
The basis functions generated by the wavelet filter bank provide 
multiple resolutions in time domain and frequency domain. Time–

E-mail addresses: bhatidinesh@gmail.com (D. Bhati), pachori@iiti.ac.in
(R.B. Pachori), vmgadre@ee.iitb.ac.in (V.M. Gadre).

frequency localized wavelet bases are desirable in signal analysis 
[4–6], image coding [7–9,8,10], edge detection and image segmen-
tation [11,12]. The joint time–frequency localization of the wavelet 
basis functions is generally represented by the dimensions of the 
tile on the time–frequency plane [13] that represents them. The 
area of the tile or the time–frequency product (TFP) represents the 
joint localization of the basis function in the time and frequency 
domain. Various signal processing applications require trade-off in 
time localization and frequency localization. For example, time lo-
calized bases preserve the edges in the image whereas bandwidth 
compression of an image can be achieved with good frequency lo-
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calization. In this paper, we propose a novel design method for 
time–frequency localization of a regular scaling filter and the cor-
responding scaling function. We show that the proposed method 
outperforms Slepians’ [14], Ishii and Furukawas’ [15] methods for 
time–frequency localization of discrete scaling filters as well as 
continuous scaling functions. We use the concentration measures 
for time-limited functions proposed by Bhati et al. [16] and pro-
pose a design method for the time–frequency localized three-band 
biorthogonal linear phase (BOLP) wavelet filter bank of length nine 
and regularity order of one. The design problem of time–frequency 
localized wavelet filter banks can be addressed in two different 
ways, that directly affects the complexity of the design problem. 
Time–frequency localized wavelet filter banks can be designed ei-
ther by time–frequency localization of scaling and wavelet func-
tions [17–19,16], or the filters of a regular perfect reconstruction 
filter bank (PRFB) [8,20–23]. The former deals with Heisenberg un-
certainty principle (HUP) for signals in L2(R) and the later is based 
on HUP for signals in L2(Z). The time–frequency localized filters 
do not ensure that the corresponding scaling and wavelet functions 
are also well localized in time and frequency domain. Therefore, in 
this paper, we propose a design method in which we use the ex-
pressions for time variance and frequency variance proposed by 
Bhati et al. [16] and the sum of the weighted TFP’s of the scal-
ing and wavelet functions is minimized with respect to the free 
parameters of the filter bank.

There are various notions in the literature to measure the ef-
fective support of a function in time or frequency domain [24,14,
5,15,25]. Slepian et al. [14] measures the energy concentration in 
the given frequency band for time-limited signals whereas, Gabor 
uses the notion of variances to measure the effective supports in 
time and frequency domains [5]. Time–frequency uncertainty prin-
ciple (UP) in discrete domain is studied by several authors in the 
literature. Ishii and Furukawa [15] proposed time–frequency UP for 
discrete time sequences. Gabor showed that signals in L2(�) can-
not be localized simultaneously in time and frequency domain and 
there exists a lower bound of 0.25 on the TFP [5]. Chui et al. [26]
determine the similar uncertainty lower bound for band pass func-
tions. Venkatesh et al. [25] studied the limitations of UP proposed 
by Ishii and Furukawa [15]. They obtained the continuous time sig-
nal from the samples of the symmetric low pass bandlimited signal 
by interpolation and removed the inconsistency between the def-
initions of discrete-time and continuous-time variances. However, 
the variance expressions proposed by them are applicable to zero 
phase low pass bandlimited functions only.

Nam [27] formulates the discrete-time measure to quantify the 
uncertainty in time–frequency analysis using the discrete Fourier 
transform (DFT) for a subclass of finite length discrete signals. 
They derive the relation between the uncertainties for discrete-
time and continuous-time cases. However, they do not determine 
the filter or the function optimally localized in time and frequency 
domains. Parhizkar et al. [28] design the time–frequency local-
ized filter however, the filter is not a regular scaling filter and do 
not generate a time–frequency localized scaling function. Lebedeva 
and Prestin [29] used the notion of Brietenberg uncertainty con-
stant and proposed the Parseval periodic wavelet frames optimally 
localized in time and frequency domain. However, they do not de-
termine the corresponding time–frequency localized discrete-time 
regular scaling filter. Sharma et al. [20] reduced the design com-
plexity associated with the product of variances and proposed 
minimization of sum of variances to design time–frequency local-
ized wavelet filter banks. They design the time–frequency localized 
filter using eigenfilter approach. However, in order to simplify the 
design problem, they impose the unit norm constraint on the half 
of the filter coefficients of the linear phase filter and therefore 
the designed eigenfilters are not optimally localized in time and 
frequency domain. Sharma et al. [30] design time–frequency lo-

calized scaling filter for the specified time variance or frequency 
variance of the filter. Sharma et al. [31] use UP for linear oper-
ators to design time–frequency localized filter, however, they do 
not impose the regularity constraint to obtain the time–frequency 
localized scaling filter and function. Bhati et al. [16] design the 
time–frequency localized scaling function as well as scaling filter, 
however, the designed scaling filter is not optimally localized with 
TFP close to 0.25. Gabors’ UP [5] for continuous-time functions 
is generally studied assuming function f (t) ∈ L2(�) [32,33,25,34]. 
Bhati et al. [16] emphasize that t f (t) ∈ L2(�) and df (t)

dt ∈ L2(�) to-
gether implies f (t) ∈ L2(�). Bhati et al. [35] design time–frequency 
localized regular linear phase scaling filters, optimally localized in 
time and frequency domains, however, the proposed semidefinite 
relaxation does not ensure time–frequency localization of scaling 
function generated from the cascade iterations of the designed 
scaling filter.

In this paper, the notions of prolate spheroid wave functions 
(PSWF) and the HUP are used to design the time–frequency lo-
calized scaling filter which generates the time–frequency localized 
scaling function with TFP close to the lowest possible lower bound 
of 0.25. In the approach based on PSWF, we maximize the energy 
of the time-limited filter in a specified bandwidth and propose a 
design method which ensures time–frequency localization of scal-
ing filter as well as the scaling function. Bhati et al. [16] design 
time–frequency localized scaling function with unit Sobolev regu-
larity. In this work, we use a scaling filter with regularity order of 
two and design a time–frequency localized scaling function with 
Sobolev regularity of two. HUP for linear operators is used in the 
second approach subject to the linear constraints for regularity 
to design time–frequency localized scaling filter and the function. 
Sharma et al. [31] use the notion of quantum harmonic oscillator 
and DFT and propose the discrete-time UP which is an equivalent 
of Gabor’s UP for continuous time functions. In this paper, we com-
pute the frequency variance of filter from its DFT and propose a 
much simpler approach to obtain the discrete-time UP proposed 
by Sharma et al. [31]. We compare the performance of proposed 
UP with that proposed by Slepian [14] and Ishii and Furukawa 
[15] employing the discrete time Fourier transform (DTFT) of the 
filter to measure its frequency variance. In an another proposed 
approach in the paper, the sum of time variance and frequency 
variance is used to formulate a positive definite matrix and the 
eigenvectors of the proposed positive definite matrix are used to 
obtain the samples of time–frequency localized bandlimited scal-
ing and wavelet functions. In the proposed method, we modify the 
product form of discrete-time uncertainty measure proposed by 
Venkatesh et al. [25] to the summation form and use it to design 
the bandlimited low pass function with TFP close to the lowest 
possible lower bound of 0.25. This method simplifies the condition 
of regularity of the scaling function, therefore, we further use it for 
the design of time–frequency localized three-band filter bank.

The spectral characteristics of the basis functions greatly af-
fect the performance of the filter bank in signal classification [36]. 
Two-band ideal filter banks suffer from poor frequency resolution 
in the low as well as high frequency band with frequency resolu-
tion of each band equal to �ω = π/2 [37,35]. Two-band wavelet 
filter banks generate the wavelet basis functions from its succes-
sive cascade iterations on the low pass filter branch. Provided the 
conditions for regularity of the filters are satisfied, each successive 
cascade iteration on the low pass branch generates smooth wavelet 
basis functions to analyze the signals in their low frequency bands. 
Though the low pass and band pass basis functions of the com-
monly used wavelet filter bank are localized in time and frequency, 
the cascade iterative structure used in wavelet multiresolution 
analysis suffers from the drawback that successive basis functions 
analyze the low frequency band only and not the high frequency 
components of the signal. Higher number of cascade iterations 
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