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In this paper, we investigate the effect of mutual coupling on direction-of-arrival (DOA) estimation using 
non-uniform arrays. We compare and contrast the DOA estimation accuracy in the presence of mutual 
coupling for three different non-uniform array geometries, namely, minimum redundancy arrays (MRAs), 
nested arrays, and co-prime arrays, and for two antenna types, namely dipole antennas and microstrip 
antennas. We demonstrate through numerical simulations that the mutual coupling, if unaccounted for, 
can, in general, lead to performance degradation, with the MRA faring better against mutual coupling 
than the other two non-uniform structures for both antenna types. We also propose two methods that 
can compensate for the detrimental effects of mutual coupling, leading to accurate and reliable DOA 
estimation. Supporting numerical simulation results are provided which show the effectiveness of the 
proposed compensation methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Antenna arrays are employed for direction-of-arrival (DOA) es-
timation in a broad range of applications including radar, sonar, 
and wireless communications [1–3]. High-resolution DOA estima-
tion techniques, such as MUSIC [4], ESPRIT [5], and �1-SVD [6], 
are widely used for direction finding. In real antenna arrays, these 
techniques, in their original implementations, suffer from a model 
mismatch which, among other factors, can be attributed to mu-
tual coupling between the elements. Mutual coupling occurs when 
an external illuminating source induces a current on the surface 
of each array element, causing it to radiate. A portion of the radi-
ated signal is captured by the remaining elements in the array. If 
unaccounted for, this interaction affects the characteristics and the 
performance of the array [7,8].

The mutual coupling between the array elements can be cap-
tured in a matrix called the mutual coupling matrix (MCM). Two 
major trends exist in the literature for performing DOA estima-
tion in the presence of mutual coupling. The first deals with the 
case of perfectly known or modeled MCM, wherein the DOA es-
timation procedure is modified to account for the coupling [9]. 
In the second trend, the MCM is assumed to be unknown or im-
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precisely known with a specific structure, and is jointly estimated 
along with the source directions.

Electromagnetic theory and numerical or analytical modeling 
techniques are typically employed to characterize the MCM [8,
10–14]. The MCM depends on the self and mutual impedances 
between the array elements. One of the earliest methods that 
model the coupling matrix is the open-circuit method [8]. This 
method treats the array as a bilateral terminal network and re-
lates the uncoupled voltages with the coupled voltages through 
a mutual impedance matrix. For dipole antennas, the elements 
in the mutual impedance matrix can be approximated by closed-
form expressions [15]. An extension of the open-circuit method 
has been proposed in [10], where two types of mutual impedances 
are defined, namely, the transmission mutual impedance and the 
re-radiation mutual impedance. In [11], the receiving-mutual-
impedance method (RMIM) is described for use in receive-only 
antenna arrays. As such, it provides a more accurate coupling 
model in DOA estimation applications. RMIM considers each an-
tenna pair separately to compute the receiving mutual impedances. 
An enhancement of RMIM is presented in [12], which takes into 
account all the elements simultaneously in order to compute the 
receiving mutual impedances.

For a perfectly known or modeled MCM, DOA estimation al-
gorithms can be modified to incorporate the coupling and com-
pensate for it in order to achieve accurate source directions [9]. 
However, if the modeled MCM is not exact, the performance of 
the DOA estimation is degraded. Moreover, the MCM must be re-
calibrated periodically to account for any changes in local condi-
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tions. For instance, the presence of a new scatterer in the vicinity 
of the antenna array changes the mutual coupling. Several meth-
ods have been proposed to circumvent these issues. These methods 
assume the coupling matrix to be unknown or imprecisely known 
and aim to jointly estimate the MCM along with the source DOAs 
[7,16,17]. Ref. [7] presents an iterative method to estimate the 
MCM, the DOAs, and the antenna gains, wherein the cost func-
tion is minimized with respect to one unknown quantity at a time 
while keeping the remaining two unknowns fixed. A maximum 
likelihood estimator for DOA estimation under unknown multi-
path and unknown mutual coupling has been proposed in [16]. 
Ref. [17] employs sparse reconstruction to perform DOA estima-
tion in the presence of unknown mutual coupling. However, all of 
these aforementioned methods have been developed for uniform 
linear arrays (ULAs) and take advantage of the special structure of 
the corresponding MCMs. Although these methods can be modified 
and applied to non-uniform arrays, they fail to take advantage of 
the increased degrees-of-freedom (DOFs) offered by non-uniform 
arrays for DOA estimation [18–22]. Recall that an N A -element non-
uniform array can provide O (N2

A) DOFs, thereby permitting DOA 
estimation of more sources than sensors. An iterative method for 
DOA estimation using non-uniform arrays in the presence of mu-
tual coupling was proposed in [23]. This method treats the non-
uniform array as a subset of a ULA and, therefore, cannot take full 
advantage of the increased DOFs.

In this paper, we investigate the mutual coupling effect in non-
uniform arrays. First, we examine the impact of coupling on the 
DOA estimation accuracy for different array geometries, including 
minimum redundancy arrays (MRA) [18], nested arrays [20], and 
co-prime arrays [21,22]. The performance is evaluated for differ-
ent array sizes and for two antenna element types, namely, dipole 
antenna and microstrip antenna. The latter is becoming increas-
ingly popular in radar and wireless communications due to its low 
profile, ease of fabrication, low cost, and compatibility with radio 
frequency (RF) circuit boards. A computational electromagnetics 
software package, FEKO [24], is used to model the antenna ar-
rays, and the RMIM [12] is used to compute the coupling matrices 
based on the obtained measurements. We show that the MRA pro-
vides superior performance compared to the nested and co-prime 
geometries, irrespective of the antenna type. Second, we propose 
two compensation methods that allow accurate DOA estimation 
using non-uniform arrays in the presence of mutual coupling. The 
first method assumes partial knowledge of the mutual coupling 
and employs an iterative approach to update the perturbed MCM 
and DOAs. Sparse signal reconstruction is used to find the source 
directions for a given coupling matrix, and a global optimization 
algorithm called covariance matrix adaptation evolution strategy 
(CMA-ES) [25] is used to update the MCM while keeping the DOAs 
fixed. The second method assumes unknown coupling and simul-
taneously estimates the MCM, the source powers, and sources di-
rections by minimizing a cost function using CMA-ES. Finally, the 
effectiveness of the proposed methods is evaluated through nu-
merical examples.

The remainder of this paper is organized as follows. High-
resolution DOA estimation using non-uniform arrays is briefly re-
viewed in Section 2. The signal model in the presence of mutual 
coupling is also presented in the same section. In Section 3, DOA 
estimation performance of different non-uniform array geometries 
is evaluated and compared for the case of uncompensated mu-
tual coupling. Section 4 discusses the two proposed compensa-
tion methods that allow accurate DOA estimation under mutual 
coupling and provides supporting numerical results. Section 5 con-
cludes the paper.

2. DOA estimation using non-uniform arrays

A general N A -element linear array is considered. The elements 
positions are assumed to be integer multiples of the unit spacing, 
i.e., xi = nid0, i = 1, . . . , N A , where xi is the position of the ith 
array element, ni is an integer, and d0 is the unit spacing which 
is usually set to half-wavelength at the operating frequency. As-
sume that D narrowband sources with directions {θ1, θ2, . . . , θD}
and powers {σ 2

1 , σ 2
2 , . . . , σ 2

D} impinge on the array, where θ is 
measured relative to broadside. In the absence of mutual coupling, 
the received data vector at snapshot t can be expressed as

x(t) = As(t) + n(t), (1)

where s(t) is the D × 1 source signal vector, n(t) is the N A × 1
noise vector, and A is the N A × D array manifold matrix whose 
(i, d)th element is given by

[A]i,d = exp( jk0xi sin θd). (2)

Here, k0 is the wavenumber at the operating frequency and θd is 
the DOA of the dth source. Under the assumptions of uncorrelated 
sources and spatially and temporally white noise, the covariance 
matrix can be expressed as

Rxx = E
{

x(t)x(t)H} = ARssAH + σ 2
n I, (3)

where E{·} is the expectation operator, (·)H denotes conjugate 
transpose, Rss = diag{σ 2

1 , σ 2
2 , . . . , σ 2

D} is the source covariance ma-
trix, σ 2

n is the noise variance, and I is an N A × N A identity matrix.
Two approaches can be used for DOA estimation. The first ap-

proach is based on covariance matrix augmentation [26–28], while 
the second uses spatial smoothing [21,22]. Since the augmented 
covariance matrix in the first approach may not always be positive 
semidefinite, we consider spatial smoothing based approach in this 
paper, which is briefly reviewed below.

Vectorizing the covariance matrix in (3), we obtain

z = vec{Rxx} = Ãp + σ 2
n ĩ, (4)

where p = [σ 2
1 , σ 2

2 , . . . , σ 2
D ]T is the source powers vector, Ã =

A∗ � A, the symbol ‘�’ denotes the Khatri–Rao product, the su-
perscript ‘∗’ denotes complex conjugate, and ĩ = vec{I} is the vec-
torized identity matrix. The vector z emulates measurements at 
a longer array whose elements positions are given by the differ-
ence coarray of the non-uniform arrays, while the N2

A × D ma-
trix Ã is the corresponding manifold matrix [29]. Assuming that 
the difference coarray has contiguous elements between −Ld0 and 
+Ld0, the data measurements can be rearranged to form a new 
(2L + 1) × 1 vector z f , which contains measurements at these po-
sitions,

z f = Ã f p + σ 2
n ĩ f . (5)

Since the sources are replaced by their powers in (5) and the 
noise is deterministic, the sources now appear as coherent, and 
subspace-based high-resolution methods can no longer be applied 
directly to perform DOA estimation. Spatial smoothing is used to 
build the rank of the covariance matrix of z f [30]. The filled part 
of the difference coarray is divided into (L + 1) overlapping subar-
rays, each having (L + 1) contiguous elements. The positions of the 
elements of the mth subarray are given by the following set
{
(l + 1 − m)d0, l = 0,1, . . . , L

}
. (6)

The received data vector at the mth subarray is denoted by z fm , 
and the spatially smoothed covariance matrix is then computed 
as

Rzz = 1

L + 1

L+1∑
m=1

z fm zH
fm

. (7)
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