
JID:YDSPR AID:1962 /FLA [m5G; v1.180; Prn:30/06/2016; 14:27] P.1 (1-11)

Digital Signal Processing ••• (••••) •••–•••

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Sparse source localization using perturbed arrays 

via bi-affine modeling

Ali Koochakzadeh ∗, Piya Pal

Dept. of Electrical and Computer Engineering, University of Maryland, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
Coprime sampling
Co-array
Bi-affine model
Array perturbations
Sparse source localization

Non-uniform spatial sampling geometries, such as nested and coprime arrays, are provably capable of 
localizing O (M2) sources using only M sensors. However, such guarantees require the physical locations 
of the sensors to satisfy certain constraints, as dictated by the corresponding array geometries. In 
this paper, we consider the scenario when these constraints may be violated, leading to unknown 
perturbations on the locations of sensors. Such perturbations can have detrimental effect on the 
performance of virtual array based direction-of-arrival (DOA) estimation algorithms, since the perturbed 
virtual array will no longer be a uniform linear array (ULA). We propose a novel self-calibration approach 
for underdetermined DOA estimation with such arrays, that makes extensive use of the redundancies 
(or repeated elements) in the virtual array. Assuming small perturbations, and a sparse grid-based 
model for the DOAs, we extract a novel “bi-affine” model (affine in the perturbation variable, and linear 
in the source powers) from the covariance matrix of the received signals. The redundancies in the 
co-array are then exploited to eliminate the nuisance perturbation variable, and reduce the bi-affine 
problem to a linear underdetermined (sparse) problem in source powers, from which the DOAs can 
be exactly recovered under suitable conditions. This reduction is derived for both ULA and a newly-
introduced robust version of coprime arrays, when the covariance matrix of the received signals is exactly 
known. Our approach is compared and contrasted with recently developed algorithms for blind gain and 
phase calibration (BGPC), whose signal model is fundamentally different from ours. We also provide an 
iterative algorithm to jointly solve for the DOAs and perturbation values when we can only estimate the 
covariance matrix using a finite number of snapshots.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Directions-of-arrival (DOA) estimation of energy emitting
sources using sensor arrays finds important application in prob-
lems ranging from target localization in radar system to speech 
enhancement using microphone arrays. In recent times, new sparse 
array geometries, such as coprime [1] and nested arrays [2], have 
been proposed that are capable of identifying O (M2) sources us-
ing just M sensors, exploiting the enhanced degrees of freedom 
offered by their difference co-arrays (or, virtual arrays) [3]. In 
order to exploit the enhanced degrees of freedom, so far, two 
main approaches for DOA estimation have been proposed: 1) Sub-
space methods, 2) Sparsity based methods. In the former approach, 
which is based on the MUSIC algorithm, the subspace properties of 
the spatially smoothed co-array manifold is used to estimate the 
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DOAs [4]. However, in the latter approach, the range of all possible 
directions is discretized into a grid, and then the DOA estimation 
problem is reformulated as a sparse representation problem [5–8]. 
We review this approach in more details in Section 2.

It is well known that array imperfections such as gain and/or 
phase error, perturbations in sensor locations, and mutual cou-
pling, can significantly degrade the performance of DOA estimation 
algorithms [9,10]. This is mainly due to the strong dependence 
of these algorithms on the accurate knowledge of the underly-
ing array manifold. In this paper, we consider the sensor location 
error as the only imperfection associated with the physical array, 
i.e., we assume that the sensor locations are perturbed from their 
nominal positions. The problem of DOA estimation using such per-
turbed arrays has been well studied for more than two decades. 
Existing approaches mostly treat the perturbations as unknown 
but deterministic parameters, and then estimate these parameters 
jointly with the DOAs. Classical methods such as [10–13], resolve 
array uncertainties using eigenstructure-based methods, or vari-
ants of the maximum-likelihood approach. Recently, [14] proposed 
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a unified framework for different kind of array imperfections, and 
proposed a Bayesian approach for array calibration and DOA es-
timation. However, these approaches mostly work for an overde-
termined signal model (fewer sources than sensors), primarily be-
cause many of them consider a uniform linear array.

In recent times, the problem of blind gain and phase calibra-
tion (BGPC) has been formulated as a bilinear problem [15], which 
in turn, can be recast as a convex optimization problem, using 
the idea of “lifting” [16–18]. However, such a formulation does 
not consider the concept of co-array, and, hence their guarantees 
are not applicable for an underdetermined signal model where the 
number of sources can possibly be O (M2).

In contrast, the authors in [19], studied the effect of co-
array geometry on the BGPC problem and proposed a new self-
calibration algorithm for nested arrays in presence of gain/phase 
errors. Their approach builds on and extends the method in [12], 
which was originally proposed for a ULA. However, in this paper, 
we consider perturbations in sensor locations, which gives rise to 
a signal model, which is distinctly different from that considered 
in [19]. In BGPC problems, the gain and/or phase of the sensors 
are unknown, and the goal is to resolve both unknown gain and/or 
phase and the DOAs. In our case, we assume that the phase and 
gain of the signals received from the sensors are ideal, but the 
location of the sensors are perturbed. We will compare the sig-
nal model defined for gain/phase error, which has been studied in 
[19], against sensor location error in Section 2.2, and establish im-
portant differences between them.

Since the self calibration algorithm developed in [19] cannot 
be directly applied to our case, we follow a different approach in 
this paper. We assume that the perturbations are small, so that 
we can approximate the coarray manifold using its first order Tay-
lor series expansion. This formulation leads to a “bi-affine” model, 
which is linear in source powers, and affine in the perturbation 
variable. We show that it is possible to recover the DOAs even in 
presence of the nuisance perturbation variables, via a clever elimi-
nation of variables. By exploiting the pattern of repeating elements, 
it is possible to reduce the said bi-affine problem to a linear un-
derdetermined (sparse) problem in source powers, which can be 
efficiently solved using �1 minimization. We establish precise con-
ditions under which such reduction is possible, for both ULA and a 
robust version of coprime arrays.

The paper is organized as follows. In Sec. 2 we compare and 
contrast different kinds of array imperfections (gain/phase error, 
sensor location perturbation) in terms of their effects on the differ-
ence co-array. In Sec. 3, we introduce the bi-affine model for DOA 
estimation with perturbed sensors. Sec. 4, establishes a transfor-
mation under which we can write the bi-affine problem as a linear 
problem in source powers, via elimination of the unknown pertur-
bation variable. The specific details of this transformation depend 
on the array geometry. In Sec. 5, we review an iterative algorithm 
proposed in [20] to jointly solve for DOAs and source powers when 
we only have an estimate of the covariance matrix. Numerical sim-
ulations are conducted in Sec. 6. Sec. 7 concludes the paper.

Notation: Throughout this paper, matrices are represented by 
upper case bold letters, and vectors by lower case bold letters. The 
symbol xi represents the ith entry of a vector x. The symbol j de-
notes the imaginary unit 

√−1. The symbols (.)∗, (.)T , (.)H stand 
for the conjugate, transpose, and hermitian, respectively. The sym-
bols ◦, �, ⊗ represent the Hadamard product, Khatri–Rao product, 
and Kronecker product, respectively. The symbol ‖.‖F denotes the 
matrix Frobenius norm and vec(.) represents the vectorized form 
of a matrix.

2. Signal model for gain/phase error vs location errors

Consider a linear array of M antennas impinged by K narrow-
band sources with unknown directions of arrival (DOA) θ ∈ R

K , 
θ = [θ1, θ2, · · · , θK ]T . Let y[l] ∈C

M be the vector of signals received 
by the M antennas, x[l] ∈C

K represent the emitted signals from K
sources, and w[l] be the additive noise (all corresponding to the lth 
time snapshot). The source signals are assumed to be zero mean, 
and pairwise uncorrelated, and the noise vector is zero mean, i.i.d. 
with variance σ 2

w , and uncorrelated from the signal. We do not 
make any specific assumptions on the distribution of the signal or 
noise.

The sensors are designed to be at the nominal locations 
d̃1, ̃d2, · · · , ̃dM , where d̃m ∈ R for 1 ≤ m ≤ M , and d̃m = Ddm . Here, 
dm ∈ Z, and D is the minimum inter-element spacing of the array, 
which is typically chosen to be D = λ/2, λ being the carrier wave-
length of the narrowband sources. Note that dm are the normalized 
sensor locations (and d̃m are the actual sensor locations). In the 
sequel, we will use the normalized locations as we introduce the 
perturbed array model. In this paper, we consider two different ar-
ray geometries: uniform linear array (ULA), and coprime array. In a 
ULA, we have dm = m −1, for m = 1, · · · , M . A coprime array, how-
ever, is comprised of two different ULAs with spacings N1 and N2, 
where N1 and N2 are coprime numbers. We will review the co-
prime arrays in more detail in Sec. 2.1.2. To simplify the notations, 
we designate a spatial frequency ωi = 2π D

λ
sin θi corresponding to 

each direction of arrival θi for 1 ≤ i ≤ K . Choosing D = λ/2, we 
have ωi = π sin θi . Also, let ω = [ω1, · · · , ωK ]T be the vector of 
spatial frequencies associated with the K sources.

Let ζ ∈ C
M be a vector of unknown parameters associated with 

array imperfections, such as gain/phase, or sensor location errors. 
The received samples at the time instant l can be written as

y[l] = A(ω, ζ )x[l] + w[l] (1)

in which A(ω, ζ ) = [a(ω1, ζ ), . . . , a(ωK , ζ )] denotes the array man-
ifold, and a(ωi, ζ ) ∈ C

M is the steering vector for the ith source. 
In the absence of array imperfections (ζ = 0), the mth element 
of the steering vector corresponding to direction θi is given by 
am(ωi, 0) = ejdmωi . In the following subsections, we will first re-
view the concept of a virtual array by considering the covariance 
matrix for the unperturbed problem [2]. Subsequently, we will 
discuss and distinguish the signal models corresponding to two 
different kinds of array imperfections: (i) gain/phase error, and 
(ii) sensor location error.

2.1. Virtual array in the absence of array imperfections

In the absence of array imperfections (ζ = 0), we can write the 
covariance matrix of the received signals as

Ry = E(yyH ) = A0(ω)Rx (A0(ω))H + σ 2
w I (2)

where Rx = E(xxH ) is the covariance matrix of the sources, and 
A0(ω) = A(ω, 0). Assuming that the sources are uncorrelated, i.e., 
Rx is diagonal, following [2] the vectorized form of the covariance 
matrix can be written as

z = AKR,0(ω)p̃ + σ 2
w vec(I), (3)

where AKR,0(ω) = A0(ω)∗ � A0(ω) is the difference co-array,
p̃ = [p1, p2, · · · , pK ] is the diagonal of Rx , and z = vec(Ry). The 
(m + (m′ − 1)M, i)-th element of AKR,0(θ) is given by ejωi(dm−dm′ ) . 
Therefore, each column of AKR,0(ω) is characterized by the differ-
ence co-array:

Sca = {dm − dm′ ,1 ≤ m,m′ ≤ M}
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