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This paper addresses the problem of direction of arrival (DOA) estimation by exploiting the sparsity 
enforced recovery technique for co-prime arrays, which can increase the degrees of freedom. To apply 
the sparsity based technique, the discretization of the potential DOA range is required and every target 
must fall on the predefined grid. Off-grid target can highly deteriorate the recovery performance. To the 
end, this paper takes the off-grid DOAs into account and reformulates the sparse recovery problem with 
unknown grid offset vector. By introducing a convex function majorizing the given objective function, an 
iterative approach is developed to gradually amend the offset vector to achieve final DOA estimation. 
Numerical simulations are provided to verify the effectiveness of the proposed method in terms of 
detection ability, resolution ability and root mean squared estimation error, as compared to the other 
state-of-the-art methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The problem of direction-of-arrival (DOA) estimation has arisen 
in various applications, such as radar, sonar, radio astronomy and 
so on [1]. It is well known that for traditional linear array with 
N sensors, the commonly used subspace based methods [2,3] can 
resolve up to N − 1 sources. To detect more sources, new non-
uniform linear array geometries, such as nested array [4] and 
co-prime array [5–8], have been recently proposed. For the non-
uniform arrays, two main approaches can be utilized to enhance 
the degrees of freedom (DOFs), i.e., covariance vectorization [6]
and covariance fitting [9]. By vectorizing the covariance matrix of 
the received signals, a virtual difference coarray with a wider aper-
ture is formed to achieve the extended DOFs. By covariance fitting, 
the covariance matrix for a redundancy array is recovered accord-
ing to its Hermitian Toeplitz structure and the extended DOFs can 
be obtained. With the extended DOFs, the nested array structure 
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in [4] can resolve O(N2) sources with only N sensors. However, 
due to some closely located sensors, the nested array suffers from 
the mutual coupling problem. The co-prime array structure [5] can 
address this problem. Such arrays consist of two uniform linear 
subarrays with M and N sensors, and their corresponding inter-
element spacings are Nλ/2 and Mλ/2, respectively, where λ is the 
wavelength. The co-prime array can resolve O(MN) sources with 
M + N − 1 sensors. To further enhance the DOFs, another co-prime 
array structure was proposed in [6] by doubling the number of 
sensors in one subarray, where a larger number of consecutive vir-
tual sensors can be achieved.

Various methods have been proposed to exploit the increased 
DOFs of co-prime arrays for DOA estimation. In [6], a subspace-
based spatial smoothing MUSIC (SS-MUSIC) algorithm was imple-
mented and showed that an increased number of sources can 
be detected. The SS-MUSIC requires the knowledge of number 
of sources, to this end, a MUSIC-like subspace method was pro-
posed in [10], where the number of sources is revealed as a by-
product of a low-rank denoising stage. However, both the MUSIC-
like methods in [6,10] require a consecutive difference coarray lag 
and the application of spatial smoothing essentially halves the ob-
tained virtual array aperture [11]. Thus the detection performance 
is compromised. By taking advantages of the fact that the spa-
tial signal spectra are sparse, sparsity-based estimation methods 
[11–15] have been recently proposed to overcome these disadvan-
tages of the MUSIC-like methods. These sparsity-based techniques 
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discretize the range of interest into a grid and assume that the lo-
cations of the sources must fall on the predefined grid. However, 
no matter how fine the grid is, true DOAs are unlikely to lie on the 
pre-specified grid and off-grid problem can lead to mismatches in 
the model. The recovery performance is then deteriorated as a re-
sult.

To address the off-grid issue, the joint sparsity between original 
signal and mismatch parameter is exploited in [16,17] and leads 
to an improved performance over traditional sparsity-based meth-
ods. Utilizing the fact that the off-grid DOA can be well approxi-
mated by the closest two neighboring grids, an efficient method is 
proposed in [18] for a single source and multiple well-separated 
sources. Through linearization, the off grid is modeled in [19] and 
solved in a Bayesian approach to exploit the joint sparsity among 
different snapshots. Iterative reweighted algorithms are proposed 
in [20,21] for joint parameter learning and sparse signal recovery, 
which mainly applies to uniformly separated cases. However, most 
of the existing methods focus on traditional linear array and ignore 
the increased DOFs provided by the difference coarray of co-prime 
array. To this end, in [22], by using the first-order Taylor approxi-
mation, the grid mismatches can be estimated simultaneously with 
the original signal for co-prime arrays. Recently, grid-less based 
sparse methods have also been proposed in [9,10]. Due to no need 
for discretization, these methods can solve the off-grid issue natu-
rally. However, the covariance fitting in [9] requires that the array 
is a redundancy array, i.e., its difference coarray forms a ULA. For 
non-redundancy arrays, a ULA subset needs to be selected from the 
coarray and the extended DOFs are reduced as a result. Meanwhile, 
the application of spatial smoothing in [10] halves the extended 
DOFs. Therefore, the achieved DOFs are not fully utilized in these 
literatures.

In this paper, we address the problem of DOA estimation for 
non-uniform co-prime arrays with off-grid mismatch, where the 
increased DOFs are fully exploited. We propose an iterative ap-
proach to estimate DOAs and grid offset jointly. We first represent 
the off-grid DOAs by the sum of two items, i.e., the presumed grid 
and its unknown grid offset. The offset is the distance from the 
true DOA to the neighbor grid point, which lies in a bounded in-
terval. By introducing a convex majorization function to enforce 
sparsity, we then reformulate the sparse recovery problem with 
the unknown offset vector. Finally we iteratively decrease the ma-
jorization function to amend the offset vector such that the off-
grid DOAs can be properly represented. We show by numerical 
simulations that the proposed method outperforms SS-MUSIC [6]
and all on-grid based LASSO method [11] in terms of detection 
ability, resolution ability, and estimation accuracy.

The rest of the paper is organized as follows. Section 2 intro-
duces the system model and the difference coarray with a larger 
aperture. Section 3 formulates the off-grid problem and presents 
the proposed sparse DOA estimation method. The estimation per-
formance is evaluated in Section 4. Section 5 concludes this paper.

The following notations are used throughout this paper. Ma-
trices (vectors) are represented by upper-case (lower-case) bold 
characters. In particular, IN denotes the N × N identity matrix. (·)∗ , 
(·)T , and (·)H denote the complex conjugation, transpose and con-
jugate transpose of a matrix, respectively. vec (·), E (·), ⊗ and �
are operators for vectorization, expectation, Kronecker product, and 
Hadamard product, respectively. ‖·‖0, ‖·‖1 and ‖·‖2 respectively 
denote l0, l1, and l2 norm. real (·) and imag (·) represent the real 
and imaginary part operations. CN (a,B) denotes complex Gaus-
sian distribution with mean vector a and covariance matrix B.

2. Signal model and preliminaries

Consider a co-prime sensor array which can be decomposed 
into two uniform linear subarrays. The first subarray consists of 

2M sensors with inter-element spacing Nλ/2, whereas the sec-
ond consists of N sensors with inter-element spacing Mλ/2. Here, 
M and N are co-prime integers. The array sensors are located at

L = {mNλ/2|0 ≤ m ≤ 2M − 1} ∪ {nMλ/2|0 ≤ n ≤ N − 1} . (1)

Since the first sensor of the two subarrays is collocated, the total 
number of sensors in the co-prime array is 2M + N − 1.

Assume K narrowband uncorrelated sources from directions 
θ = [θ1, θ2, · · · , θK ] impinging on the array simultaneously. There-
fore, the signal received by the array at time t (1 ≤ t ≤ T ) can be 
expressed as

x (t) =
K∑

k=1

a (θk) sk (t) + n (t)

= As (t) + n (t) .

(2)

Here A = [a (θ1) ,a (θ2) , · · · ,a (θK )] ∈ C
(2M+N−1)×K is the array 

manifold matrix, where a (θk) is the (2M + N − 1) × 1 steer-
ing vector for source k with its ith element taken as e j 2π

λ
li sin θk , 

li ∈ L. s (t) = [s1 (t) , s2 (t) , · · · , sK (t)]T is the source signal vector 
with sk (t) distributed as CN

(
0, σ 2

k

)
. The elements of noise vec-

tor n (t) are assumed to be independent and identically distributed 
(i.i.d.) random variables following the complex Gaussian distribu-
tion CN

(
0, σ 2I2M+N−1

)
. T is the number of snapshots.

The covariance matrix of data vector x (t) is obtained as

Rxx = E
[

x (t)xH (t)
]

= ARssAH + σ 2I2M+N−1

=
K∑

k=1

σ 2
k a (θk)aH (θk) + σ 2I2M+N−1,

(3)

where Rss = E
[
s (t) sH (t)

] = diag
([

σ 2
1 , σ 2

2 , · · · , σ 2
K

])
is the source 

covariance matrix. In practice, the covariance matrix Rxx is esti-
mated by using the available T samples, i.e.,

R̂xx = 1

T

T∑
t=1

x (t)xH (t). (4)

By vectorizing the covariance matrix Rxx , we have

z = vec (Rxx) = � (θ1, θ2, · · · , θK )p+σ 21n, (5)

where p = [
σ 2

1 , · · · , σ 2
K

]
, � (θ1, θ2, · · · , θK ) = [

a∗ (θ1) ⊗ a (θ1) , · · · ,

a∗ (θK )⊗a (θK )
]
, and 1n = vec (I2M+N−1) = [

eT
1 ,eT

2 , · · · ,eT
2M+N−1

]T

with ei denoting a vector with all zero elements, except for the ith 
term being one. From (2) and (5), the vector z amounts to the 
received data from a coherent signal sources vector p with a sin-
gle snapshot, and σ 21n behaves like a deterministic noise term. 
The distinct columns in � can be regarded as the steering vector 
of a larger virtual array which has sensors located at li − l j , with 
li, l j ∈ L and 1 ≤ i, j ≤ 2M + N −1. The resulting coarray has an ex-
tended aperture, which can be exploited to increase the DOFs and 
the detect ability thereby.

3. Sparse direction of arrival estimation with off-grid targets

3.1. Sparse representation

In order to estimate DOAs from (5), SS-MUSIC in [6] is feasi-
ble, however, it requires the source number K a priori. To tackle 
with this problem, sparsity based methods have been proposed 
in [11,22]. Specifically, a basis that grids spatial domain is usually 
required, i.e., one should divide the range of interest into some 
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