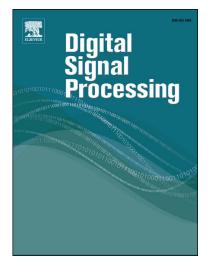
Accepted Manuscript

Sea Clutter Modeling using an Autoregressive Generalized Nonlinear-Asymmetric GARCH Model


Yunjian Zhang, Zhenmiao Deng, Jianghong Shi, Yixiong Zhang, Hui Liu

PII: \$1051-2004(16)30189-0

DOI: http://dx.doi.org/10.1016/j.dsp.2016.11.003

Reference: YDSPR 2044

To appear in: Digital Signal Processing

Please cite this article in press as: Y. Zhang et al., Sea Clutter Modeling using an Autoregressive Generalized Nonlinear-Asymmetric GARCH Model, *Digit. Signal Process.* (2016), http://dx.doi.org/10.1016/j.dsp.2016.11.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Sea Clutter Modeling using an Autoregressive Generalized Nonlinear-Asymmetric GARCH Model

Yunjian Zhang^a, Zhenmiao Deng ^{a,1,*}, Jianghong Shi^a, Yixiong Zhang^a, Hui Liu^a

^aSchool of Information Science and Engineering, Xiamen University, China

Abstract

The sea clutter modeling is critical to the radar design and assessment of relevant detection algorithms. In this paper, we investigate a family of generalized autoregressive conditional heteroscedastic (GARCH) processes to model the sea clutter as a time series, in which the current variance is dependent on historical information. The most general model (so-called the ALLGARCH model) provides more flexible variance structures to model non-Gaussian, asymmetry, and nonlinear properties of the clutter. However, after going through the usage of the ALLGARCH model, we find that it is not very suitable because the coefficients of the model, which are numerous, would be difficult to estimate in a real-time operating environment. Meanwhile, we find that some of the coefficients are negligible under almost all kinds of sea environments and weather conditions. Motivated by these observations, we propose a novel GARCH model for sea clutter modeling, which is a generalization of the nonlinear-asymmetric GARCH (NA-GARCH) model. Considering the correlation between adjacent clutter returns, autoregressive terms are also introduced. By systematically analyzing practical sea clutter data under different sea environments, we demonstrate that the proposed model achieves comparable fitting effect to some commonly used statistical models. Also, we develop the corresponding generalized likelihood ratio test (GLRT) algorithm for the new model. Numerical simulations exhibit that the proposed detector achieves higher probability of detection, comparing with the AR-GARCH detector.

Keywords: Radar, sea clutter, GARCH, nonlinearity, asymmetry.

1. Introduction

Sea clutter is the electromagnetic wave backscattering from ocean surface, when illuminated by radar. Both airborne and surface radars usually op-

^{*}Corresponding author

Email address: dzm_ddb@xmu.edu.cn (Zhenmiao Deng)

¹EURASIP Member

Download English Version:

https://daneshyari.com/en/article/4973888

Download Persian Version:

https://daneshyari.com/article/4973888

<u>Daneshyari.com</u>