
Digital Signal Processing 62 (2017) 157–167

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Performance analysis of the deficient length NSAF algorithm and 

a variable step size method for improving its performance

Yi Yu a,b, Haiquan Zhao a,b,∗
a Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Chengdu, 610031, China
b School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 6 December 2016

Keywords:
Normalized subband adaptive filter 
algorithm
Deficient length adaptive filter
Transient and steady-state analyses
Colored input
Variable step size

In all presented analyses of the normalized subband adaptive filter (NSAF) algorithm, there is a common 
assumption that the length of the adaptive filter is equal to that of the unknown system. In many 
practices, however, the adaptive filter usually works in an under-modeling situation. Namely, the length 
of the adaptive filter is less than that of the unknown system. Therefore, for this case, the existing 
analysis results for the NSAF algorithm are not applicable. In this paper, we analyze the performance 
of the deficient length NSAF algorithm based on some reasonable assumptions and approximations. More 
precisely, the expressions that characterize the transient-state and steady-state mean-square behavior of 
the algorithm are presented. Simulation results in various scenarios support our theoretical expressions. 
In addition, based on our analyses, a variable step size NSAF algorithm suitable for the under-modeling 
case is developed, which improves the performance.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

As a subfield of modern signal processing theory, adaptive fil-
tering algorithms play a very important role in some practical ap-
plications such as system identification, active noise control, beam-
forming, channel equalization, and echo cancellation [1–3]. Among 
the existing algorithms, the normalized least mean square (NLMS) 
is well-known, due to its simplicity and robustness to the power 
of input signal. Furthermore, to obtain both fast convergence rate 
and low steady-state error, many variable step size NLMS algo-
rithms were proposed [4–6]. Nevertheless, these algorithms will 
suffer from slow convergence when the input signals are colored, 
also called the correlated signals.

To deal with this problem, in a recent decade, the subband 
adaptive filter (SAF) has received significant attention. In subband 
adaptive filtering, the colored input signal is divided into almost 
mutually exclusive multiple subband signals and then critically 
decimated so that each decimated subband signal is approximately 
white, thereby improving the convergence performance [3]. In con-
trast to the conventional subband structure, the multiband struc-
ture of SAF has no aliasing and band edge effects, and thus it is 
more effective [3,7]. Based on this multiband-structure, Lee and 
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Gan proposed the normalized SAF (NSAF) algorithm by means 
of the principle of least perturbation [7]. This algorithm exhibits 
faster convergence rate than the NLMS algorithm for the colored 
input signals, due mainly to the fact that it inherits the decor-
relating property of SAF [8]. Apart from the above property, the 
NSAF algorithm has almost the same computational complexity as 
the NLMS algorithm for applications of long adaptive filter. As a 
matter of fact, the NSAF algorithm will reduce to the NLMS algo-
rithm when number of subbands is one. Following this algorithm, 
to balance a tradeoff of the NSAF algorithm between the fast con-
vergence rate and low final estimation error which is controlled by 
the fixed step size and/or regularization constant, several variable 
step size [9–12] and/or variable regularization constant [13–15]
versions were developed successively.

The performance analysis is a very important research topic for 
adaptive filtering algorithm, because it is very beneficial to pre-
dict the behavior of a specific adaptive filtering algorithm and 
to provide some guidelines to further improve the filter perfor-
mance [16–26]. In [16] and [17], the steady-state mean-square 
error (MSE) results of the NSAF algorithm for the fixed step size 
and regularization constant were analyzed, respectively. However, 
in system identification and channel estimation scenarios, analyz-
ing the mean-square-deviation (MSD) of the algorithm is more 
reasonable than the MSE of that, because the goal in these ap-
plications is to identify the system impulse response. In [18], Yin 
and Mehr studied the MSD behavior (including the transient-state 
and steady-state) of the NSAF algorithm based on the paraunitary 
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assumption of the analysis filter bank. Moreover, in this analysis, 
three methods were used to solve some hyperelliptic integrals, i.e., 
the Lobatto quadrature, chi-square, and partial fraction methods, 
at the expense of high computational complexity especially for 
a long filter. The previous theoretical analyses in [16–18] obtain 
good agreement with the simulated results, but they require the 
assumption that the length of the adaptive filter is equal to that of 
the unknown impulse response. However, in many practical appli-
cations such as acoustic echo cancellation [4,5], the length of un-
known impulse response is unknown and very large, which would 
yield under-modeling situation. Under-modeling here means that, 
the length of the adaptive filter is less than that of the unknown 
impulse response, which is also called the deficient length. Con-
sequently, the previous theoretical results on the sufficient length 
NSAF algorithm do not necessarily apply to the deficient length 
situation. For such scenarios, the performance of many algorithms 
has been studied in the literature such as the LMS [19,20], the 
frequency-domain block LMS (FBLMS) [21], and the distributed 
LMS [22,23]. To the best of our knowledge, however, there are no 
available studies to accurately evaluate the performance of the de-
ficient length NSAF algorithm. To this end, benefited from [19–23], 
we will focus on analyzing the performance of the deficient length 
NSAF algorithm under some reasonable assumptions and approx-
imations, involving the transient-state and steady-state behaviors. 
Following the previous analysis processes, we also derive a vari-
able step size NSAF algorithm which provides good performance 
in under-modeling situation. The proposed theoretical results and 
algorithm are also supported by extensive simulations.

The remainder of this paper is organized as follows. In the next 
section, we briefly review the NSAF algorithm. In Section 3, the 
performance of the deficient length NSAF algorithm is analyzed in 
mean and mean-square senses. In Section 4, simulations are per-
formed to verify the theoretical analysis. Section 5 develops the 
variable step size NSAF algorithm for under-modeling. Finally, con-
clusions are presented in Section 6.

Notation: for the ease of reference, the main notations used in 
this paper are as follows: (·)T denotes the transpose of a vector 
or matrix; E{·} denotes the mathematical expectation of a random 
variable; ‖ · ‖ stands for the l2-norm of a vector; 0M×L is a M × L
zero matrix; and IL is the identity matrix of size L × L.

2. The standard NSAF algorithm

Consider the desired signal d(n) that arises from the model

d(n) = uT
Lopt(n)wLopt + η(n), (1)

where wLopt = [w1,o, w2,o, . . . , w L,o]T is the unknown L-dimen-
sional vector to be estimated with an adaptive filter, uLopt(n) =
[u(n), u(n − 1), . . . , u(n − L + 1)]T is the input signal vector, and 
η(n) is the system noise.

Fig. 1 shows the multiband-structure diagram of the SAF [7]
which has been used to derive the NSAF family, where N de-
notes number of subbands. The desired signal d(n) and input data 
u(n) are partitioned into multiple subband signals di(n) and ui(n)

through the analysis filter bank {Hi(z), i = 0, 1, . . . , N − 1}, re-
spectively. The subband signals yi,D(k) and di,D(k) are obtained 
by critically decimating yi(n) and di(n). Here, n and k are used to 
indicate the original sequences and the decimated sequences, re-
spectively. It is easy to know that the subband error signals ei,D (k)

for i = 0, 1, . . . , N − 1 are expressed as

ei,D(k) = di,D(k) − yi,D(k)

= di,D(k) − uT
i (k)w(k) (2)

Fig. 1. Multiband-structure diagram of SAF.

where w(k) = [w1(k), w2(k), . . . , w M(k)]T denotes the tap-weight 
vector of the adaptive filter with length M , ui(k) = [ui(kN),

ui(kN − 1), . . . , ui(kN − M + 1)]T , and di,D(k) = di(kN).
In [7], the standard NSAF algorithm for updating the tap-weight 

vector is expressed as

w(k + 1) = w(k) + μ

N−1∑
i=0

ei,D(k)ui(k)

‖ui(k)‖2
(3)

where μ is the step-size. In practical applications, the length of 
the unknown system might be very large, which would result in 
under-modeling situation, i.e., M < L [4,5]. In this case, therefore, 
we will study the performance of the NSAF algorithm.

3. Performance analyses

3.1. Some assumptions and preliminaries

For convenience of analysis, the following assumptions are nec-
essary.

Assumption 1. The system additive noise η(n) is a white Gaussian 
process with zero-mean and variance σ 2

η .

Assumption 2. The cosine modulated analysis filter bank for par-
titioning the input signal u(n) and the observed output d(n) is 
assumed to be paraunitary [16,18,24,26]. Based on this assump-
tion, we have

di,D(k) = uT
Lopt,i(k)wLopt + ηi(k) (4)

where the subband noises ηi(k) for i = 0, 1, . . . , N − 1 are also 
zero-mean white but variances σ 2

ηi
= σ 2

η /N which is obtained from 
η(n) through the analysis filter bank.

Assumption 3. The tap-weight vector w(k), the subband input vec-
tor ui(k), and the subband noise ηi(k) are statistically independent. 
This type of assumption is commonly done in the context of adap-
tive filtering algorithms, see [1,16–26].

Assumption 4. Due to the inherent decorrelating property of SAF, 
each decimated subband input signal can be assumed to be white, 
i.e., E{ui(k)uT

i (k)} ≈ IMσ 2
ui

and E{‖ui(k)‖2} ≈ Mσ 2
ui

[17,24], where 
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